Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Strengthening Of Corroded Steel Structures Using Cfrp – An Experimental Review, Ghada El-Mahdy Ph.D., P.Eng, Abdallah H. Yassin, Abdel El Rahman Khaled Dec 2019

Strengthening Of Corroded Steel Structures Using Cfrp – An Experimental Review, Ghada El-Mahdy Ph.D., P.Eng, Abdallah H. Yassin, Abdel El Rahman Khaled

Civil Engineering

Fibre reinforced polymers (FRP) have been widely used to strengthen reinforced concrete structures, however, nowadays their use to strengthen steel structures is under investigation. In particular, the need to strengthen corroded steel structures found in aggressive environments, such as marine environments, which have undergone a reduction in cross-sectional area and hence a reduction in their load-carrying capacity is in need of studying. The main problems that arise when using carbon fibre reinforced polymer (CFRP) sheets to strengthen steel structures is the weakness in the interfacial bond between the CFRP and the steel surface, the thinness of CFRP sheet, and the …


Retrofit Of Corroded Corrugated Metal Culverts Using Gfrp Slip-Liner, Rahulreddy Chennareddy Dec 2019

Retrofit Of Corroded Corrugated Metal Culverts Using Gfrp Slip-Liner, Rahulreddy Chennareddy

Civil Engineering ETDs

Culverts are water conveyance structures, typically used to allow water flow and maintain a balance between the flow streams without interrupting structures such as highways and bridges. Corrugated metal pipes (CMPs) have been used as culverts in North America since the 1950s because of their low cost and simple construction method. Today, the corrosion of CMPs is a major problem faced by all U.S. Departments of Transportation. There is an urgent need to provide an efficient solution, one that is corrosion-resistant, to retrofit thousands of corroded CMPs across the country. High specific strength, high strength to weight ratio, corrosion resistance, …


Micro-Mechanical Analysis Of Corrosion Products Formed During Long-Term Carbonation Induced Corrosion Of Steel, Marijana Serdar, Dubravka Bjegovic, Valérie L’Hostis, Stéphane Poyet, Damien Féron Nov 2019

Micro-Mechanical Analysis Of Corrosion Products Formed During Long-Term Carbonation Induced Corrosion Of Steel, Marijana Serdar, Dubravka Bjegovic, Valérie L’Hostis, Stéphane Poyet, Damien Féron

International Conference on Durability of Concrete Structures

During corrosion distinct types of corrosion products form, composed of different ratios of ferrous ions and oxide, hydroxides. Corrosion products have different physical and mechanical properties, mainly density, resistivity, volume and modulus of elasticity compared to iron. Knowing properties of corrosion products is indispensable for service life modelling of structures and can give valuable insight into the long-term corrosion propagation process. In this study micro-indentation method was used to evaluate mechanical properties of different layers formed during long-term carbonation induced corrosion of steel in concrete. Investigation was performed on three sets of reinforced concrete samples, that underwent corrosion during 50, …


The Effect Of Rapid Solidification And Heat Treatment On Microstructure And Electrochemical Properties Of Advanced Biomaterial Co-Cr-Mo-C Alloy, Hamid Reza Erfanian Nazif Toosi Oct 2019

The Effect Of Rapid Solidification And Heat Treatment On Microstructure And Electrochemical Properties Of Advanced Biomaterial Co-Cr-Mo-C Alloy, Hamid Reza Erfanian Nazif Toosi

Theses and Dissertations

Co-Cr-Mo-C alloys have been used for implant materials for decades because of their strength, corrosion resistance, wear resistance, and biocompatibility. To develop durable low-friction joint replacement implants, it is important to understand the solidification structure and properties of these materials. While HCP phase is the thermodynamically stable phase in these alloys, they maintain their high-temperature γ-FCC matrix and coarse dendritic structure on cooling to room temperature when cast by conventional methods. In this research, a wedgeshaped copper chill mold was used to examine the effect of cooling rates from 10 K/s to 450 K/s on the microstructure, HCP fraction, and …


A Study And Simulation Of Flux Induced Corrosion In Copper Tubing Used For The Distribution Of Potable Water, Daniel O. Benham Jun 2019

A Study And Simulation Of Flux Induced Corrosion In Copper Tubing Used For The Distribution Of Potable Water, Daniel O. Benham

Materials Engineering

Water side corrosion within copper plumbing can occur due to a wide variety of unwanted circumstances. Through the controlled immersion of six ¾” copper tubing samples with five utilizing a unique industry standard soldering flux, this investigation associates residual flux deposits with the initiation of pitting in copper. Water stagnation in a copper potable water distribution system, typically associated with an infrequently used faucet, is a condition highly prone to copper pitting. A test apparatus designed to produce a partially stagnant flow condition with scheduled electrolyte flushes every 3 days was developed and constructed to contain 6 test samples for …


Effect Of Solder Joint Flux Residue On Medical Guide Wire Performance, Rebecca Lisberg, Enlly Bugarin Rodriguez Jun 2019

Effect Of Solder Joint Flux Residue On Medical Guide Wire Performance, Rebecca Lisberg, Enlly Bugarin Rodriguez

Materials Engineering

The effect of residual soldering flux on the mechanical properties of 304 stainless-steel core medical guide wires was analyzed. A soldering process joins the metallic components of the distal end of a medical guide wire product. Acidic soldering flux is used to prepare the surfaces of the metallic substrates. Manufacturing protocol utilizes an ultrasonic bath to remove excess flux from the soldered joints. Sample groups underwent different levels of cleaning: no cleaning, partial cleaning, and full ultrasonic bath cleaning to obtain varying residual flux levels. Experimental sample groups underwent corrosion acceleration in an environmental chamber at 37°C and 85% relative …


The Influence Of Heat Treatment On Corrosion Behavior Of Martensitic Stainless Steel Uns 42670, Armen Kvryan May 2019

The Influence Of Heat Treatment On Corrosion Behavior Of Martensitic Stainless Steel Uns 42670, Armen Kvryan

Boise State University Theses and Dissertations

Ceaseless demand for lighter, faster, and more efficient aircraft has been one of the greatest driving forces behind bearing steel innovations. Recent studies demonstrate that corrosion is one of the leading causes of bearing failure in both military and commercial aircraft. High-performing bearing steels are available but are not being used in US military applications due to high cost and security issues when steels are produced outside of the continental United States. One approach to address this issue is to engineer steels that are cost-efficient and heat treated for corrosion resistance, long wear life, etc.

This dissertation presents information on …


The Effect Of Flinak Molten Salt Corrosion On The Hardness Of Hastelloy N, David Kok Apr 2019

The Effect Of Flinak Molten Salt Corrosion On The Hardness Of Hastelloy N, David Kok

Scholar Week 2016 - present

The Molten Salt Reactor (MSR) has been identified as a promising candidate to replace aging nuclear reactors around the world. However, a suitable combination of molten salt and container material needs to be found in order to reduce the potential for corrosion in the MSR before it can be considered commercially viable. FLiNaK molten salt and the nickel-based alloy Hastelloy N have been identified as prime candidates for this function, but the severity of FLiNaK corrosion in Hastelloy N requires additional study before this combination can be used in the operation of a MSR. In this study, Hastelloy N samples …


Limit Equilibrium Method-Based Shear Strength Prediction For Corroded Reinforced Concrete Beam With Inclined Bars, Yafei Ma, Baoyong Lu, Zhongzhao Guo, Lei Wang, Hailong Chen, Jianren Zhang Mar 2019

Limit Equilibrium Method-Based Shear Strength Prediction For Corroded Reinforced Concrete Beam With Inclined Bars, Yafei Ma, Baoyong Lu, Zhongzhao Guo, Lei Wang, Hailong Chen, Jianren Zhang

Mechanical Engineering Faculty Publications

Shear strength is a widely investigated parameter for reinforced concrete structures. The corrosion of reinforcement results in shear strength reduction. Corrosion has become one of the main deterioration factors in reinforced concrete beam. This paper proposes a shear strength model for beams with inclined bars based on a limit equilibrium method. The proposed model can be applied to both corroded and uncorroded reinforced concrete beams. Besides the tensile strength of longitudinal steel bars, the shear capacity provided by the concrete on the top of the diagonal crack, the tensile force of the shear steel at the diagonal crack, the degradation …


Corrosion Initiation And Propagation On Carburized Martensitic Stainless Steel Surfaces Studied Via Advanced Scanning Probe Microscopy, Armen Kvryan, Corey M. Efaw, Kari A. Higginbotham, Olivia O. Maryon, Paul H. Davis, Elton Graugnard, Michael F. Hurley Mar 2019

Corrosion Initiation And Propagation On Carburized Martensitic Stainless Steel Surfaces Studied Via Advanced Scanning Probe Microscopy, Armen Kvryan, Corey M. Efaw, Kari A. Higginbotham, Olivia O. Maryon, Paul H. Davis, Elton Graugnard, Michael F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

Historically, high carbon steels have been used in mechanical applications because their high surface hardness contributes to excellent wear performance. However, in aggressive environments, current bearing steels exhibit insufficient corrosion resistance. Martensitic stainless steels are attractive for bearing applications due to their high corrosion resistance and ability to be surface hardened via carburizing heat treatments. Here three different carburizing heat treatments were applied to UNS S42670: a high-temperature temper (HTT), a low-temperature temper (LTT), and carbo-nitriding (CN). Magnetic force microscopy showed differences in magnetic domains between the matrix and carbides, while scanning Kelvin probe force microscopy (SKPFM) revealed a 90–200 …


An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel Jan 2019

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel

Nuclear Engineering ETDs

Renewed interest in molten salt reactor technology has brought to light the need for a better understanding of FLiBe corrosion. To this end a flowing FLiBe corrosion test loop was designed to test the flow effects of FLiBe corrosion. The loop consists of a pump, melt tank, and stainless-steel tubing assembly that heats the molten salt to high temperatures and circulates it over test specimens. The experiment has been constructed and has completed initial shakedown testing.

To support the flowing FLiBe experiment, a numerical corrosion model that couples FLiBe electrochemistry, solid metal diffusion, and mass transport was implemented. The model …


Toward Improving Ambient Volta Potential Measurements With Skpfm For Corrosion Studies, Corey M. Efaw, Thiago Da Silva, Paul H. Davis, Lan Li, Elton Graugnard, Michael F. Hurley Jan 2019

Toward Improving Ambient Volta Potential Measurements With Skpfm For Corrosion Studies, Corey M. Efaw, Thiago Da Silva, Paul H. Davis, Lan Li, Elton Graugnard, Michael F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

Scanning Kelvin probe force microscopy (SKPFM) is used in corrosion studies to quantify the relative nobility of different microstructural features present within complex metallic systems and thereby elucidate possible corrosion initiation sites. However, Volta potential differences (VPDs) measured via SKPFM in the literature for metal alloys exhibit large variability, making interpretation and application for corrosion studies difficult. We have developed an improved method for referencing SKPFM VPDs by quantifying the closely related work function of the probe relative to an inert gold standard whose modified work function is calculated via density functional theory (DFT). By measuring and tracking changes in …


Benefits Of Aluminum: Comparing The Common Materials In The Bar Grating Industry, Joanthan Geiser Jan 2019

Benefits Of Aluminum: Comparing The Common Materials In The Bar Grating Industry, Joanthan Geiser

Williams Honors College, Honors Research Projects

The main aim of this project is to study the wholistic behavior of the 6xxx series of aluminum for use in the bar grating industry for a waste water treatment environment. This project will study the comparison of certain aluminum 6xxx series alloys to steel, stainless steel, and glass fiber-reinforced plastic. While comparing these materials, it will look at the mechanical properties such as modulus of elasticity, yield strength, and ultimate tensile strength. In addition, the available corrosion test of the 6xxx series aluminum alloys will be examined to find a generalization of the corrosion behavior for this series. A …


The Effect Of Flinak Molten Salt Corrosion On The Hardness Of Hastelloy N, David Kok Jan 2019

The Effect Of Flinak Molten Salt Corrosion On The Hardness Of Hastelloy N, David Kok

Honors Program Projects

The desire to reduce pollution caused by electricity production has led to a call for the replacement of conventional fossil fuel power plants. In order to fulfill this goal, a large amount of new nuclear reactors is required, and this provides the opportunity to put new and innovative reactor designs into production. The Molten Salt Reactor (MSR) is one of the most promising concepts, but a suitable combination of molten salt and container material needs to be found to reduce the potential for corrosion before the concept can be put into production. FLiNaK molten salt and the nickel-based alloy Hastelloy …