Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Effect Of Filler Incorporation On The Fracture Toughness Properties Of Denture Base Poly(Methyl Methacrylate), Nidal Elshereksi Jan 2009

Effect Of Filler Incorporation On The Fracture Toughness Properties Of Denture Base Poly(Methyl Methacrylate), Nidal Elshereksi

Nidal Elshereksi

Poly(methyl methacrylate) (PMMA) is the material of choice for denture base construction. In spite of its many good qualities, the application of PMMA as an ideal dental base material is still restricted by a few limitations. One of these is the difficulty in achieving intrinsic radiopacity in the material. The aim of the present study is to investigate the possibility of using barium titanate (BaTiO3) as a radiopacifier in PMMA. The formulation used in this study composed of PMMA 89.5 wt%, BaTiO3 10 wt% and benzoyl peroxide (BPO) 0.5 wt% as an initiator, methyl methacrylate (MMA) 90 wt% as a …


Effect Of Filler Incorporation On The Fracture Toughness Properties Of Denture Base Poly(Methyl Methacrylate), Nidal Elshereksi Jan 2009

Effect Of Filler Incorporation On The Fracture Toughness Properties Of Denture Base Poly(Methyl Methacrylate), Nidal Elshereksi

Nidal Elshereksi

Poly(methyl methacrylate) (PMMA) is the material of choice for denture base construction. In spite of its many good qualities, the application of PMMA as an ideal dental base material is still restricted by a few limitations. One of these is the difficulty in achieving intrinsic radiopacity in the material. The aim of the present study is to investigate the possibility of using barium titanate (BaTiO3) as a radiopacifier in PMMA. The formulation used in this study composed of PMMA 89.5 wt%, BaTiO3 10 wt% and benzoyl peroxide (BPO) 0.5 wt% as an initiator, methyl methacrylate (MMA) 90 wt% as a …


Vibrational And Mechanical Properties Of 10 Mol % Sc2o3-1 Mol % Ceo2- Zro2 Electrolyte Ceramics For Solid Oxide Fuel Cells, Svetlana Lukich Jan 2009

Vibrational And Mechanical Properties Of 10 Mol % Sc2o3-1 Mol % Ceo2- Zro2 Electrolyte Ceramics For Solid Oxide Fuel Cells, Svetlana Lukich

Electronic Theses and Dissertations

Solid Oxide Fuel Cells (SOFCs) are emerging as a potential breakthrough energy conversion technology for clean and efficient production of electricity and heat from hydrogen and hydrocarbon fuels. Sc0.1Ce0.01ZrO2 electrolytes for Solid Oxide Fuel Cells are very promising materials because their high ionic conductivity in the intermediate temperature range 700°C-800°C. The vibration response of cubic and rhombohedral (β) 10 mol%Sc2O3 - 1 mol%CeO2 - ZrO2(Sc0.1Ce0.01ZrO2 ) both at room and high-temperatures is reported. The in-situ heating experiments and ex-situ indentation experiments were performed to characterize the vibrational behavior of these important materials. A temperature and stress-assisted phase transition from cubic …


Fracture Toughness, Crack-Growth-Rate And Creep Studies Of Alloy 276, Joydepp Pal Jan 2009

Fracture Toughness, Crack-Growth-Rate And Creep Studies Of Alloy 276, Joydepp Pal

UNLV Theses, Dissertations, Professional Papers, and Capstones

Austenitic nickel-base Alloy 276 had been proposed to be a candidate structural material within the purview of the nuclear hydrogen initiative program. A mechanistic understanding of high temperature tensile deformation of this alloy has already been presented in an earlier investigation. The current investigation has been focused on the evaluation of crack-growth behavior, fracture toughness, stress-corrosion-cracking and creep deformation of this alloy as functions of different metallurgical and mechanical variables. The results of crack-growth study under cyclic loading indicate that this alloy exhibited greater cracking tendency with increasing temperature at a constant load ratio (R). However, the effect of temperature …


Effects Of Mechanical And Metallurgical Variables On Creep, Fracture Toughness And Crack Growth Behavior Of Alloy 617, Muhammad Hasibul Hasan Jan 2009

Effects Of Mechanical And Metallurgical Variables On Creep, Fracture Toughness And Crack Growth Behavior Of Alloy 617, Muhammad Hasibul Hasan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Nickel base Alloy 617 has been identified to be a suitable structural material for heat exchanger applications in both hydrogen and electricity generation using nuclear heat. A maximum operating temperature of 950°C has been specified by department of energy (DOE) for both applications to achieve a maximum possible efficiency. Therefore, an extensive investigation has been pursued to evaluate time-dependent-deformation (Creep) of this alloy as functions of temperature and applied load. The results indicate that this alloy exhibited severe creep deformation, characterized by development of an instantaneous tertiary creep region at 850 and 950°C under applied stresses corresponding to its 35% …