Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Theses/Dissertations

Nanomaterials

Institution
Publication Year
Publication

Articles 1 - 30 of 33

Full-Text Articles in Engineering

Experimental Characterization And Manufacture Of Polymer Nanocomposite Dielectric Coatings For High-Temperature Superconductor Applications, Jacob Ryan Mahon May 2022

Experimental Characterization And Manufacture Of Polymer Nanocomposite Dielectric Coatings For High-Temperature Superconductor Applications, Jacob Ryan Mahon

Theses and Dissertations

Increased implementation of high-temperature superconducting (HTS) power transmission has the potential to revolutionize the efficiency of electrical grids and help unlock a fully electric transportation infrastructure. Realizing the benefits of HTS systems has been impeded by a lack of available dielectric insulation materials that can 1) withstand the extreme cryogenic operating environment of superconductors and 2) demonstrate low temperature processing that is compatible with existing superconductor manufacturing methods. Solving this problem necessitates a high-performance dielectric material with multifunctional properties specifically suited for operation in HTS systems. A polyamide and silicon dioxide (PA/SiO2) nanocomposite material with exceptional thermal stability has been …


Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman Jan 2022

Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman

Graduate Theses, Dissertations, and Problem Reports

The specificity and efficiency with which enzymes catalyze selective chemical reactions far exceeds the performance of traditional heterogeneous catalysts that are predominant in industrial applications such as conversion of commodity chemicals to value-added products, fuel cells, and petroleum refinement. Moreover, biocatalysts exhibit exceptionally high product turnover at ambient conditions with little health and environmental burden. These advantageous qualities have led to the prolific use of enzyme catalysis in pharmaceutical, detergents, and food preservation industries wherein their use has greatly reduced waste generation, Unfortunately, the full slate of benefits that enzymes can impart to a broader range of chemical processes is …


Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu Dec 2021

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu

Graduate Theses and Dissertations

Since the early 2000s heavy-metal-free quantum dots (QDs) such as CuInS2/ZnS have attempted to replace CdSe, their heavy-metal-containing counterparts. CuInS2/ZnS is synthesized in a two-step process that involves the fabrication of CuInS2 (CIS) nanocrystals (NCs) followed by the addition of zinc precursors. Instead of the usual core/shell architecture often exhibited by binary QDs, coating CIS QDs results in alloyed and/or partially alloyed cation-exchange (CATEX) QDs. The effect that zinc has on the properties of CIS NCs was studied by incorporating zinc during the first step of the synthesis. Different In:Cu:Zn ratios were employed in this study, maintaining a constant 4:1 …


Chitosan Graphene Composite Fabrication And Characterization For Treatment Of Harmful Algal Blooms And Toxins, Sarah Zetterholm Oct 2021

Chitosan Graphene Composite Fabrication And Characterization For Treatment Of Harmful Algal Blooms And Toxins, Sarah Zetterholm

Master's Theses

Chitosan graphene composites were fabricated and characterized as a management strategy for harmful algal blooms (HABs) caused by various species of cyanobacteria. These chitosan graphene materials were compared to previously studied chitosan graphene-oxide composites in both material properties and HAB treatment. In previous studies, adsorption of the cyanobacteria onto the surface of the composite materials has been observed. Investigations of the pure materials for these composites are also included in this study to determine whether removal is a result of charge interactions with the composite, or as an inherent property of the graphene or graphene oxide. Initial results suggest that …


Understanding Heterostructure Chemiresistive Gas Sensing At Room Temperature, Yale Wang Aug 2021

Understanding Heterostructure Chemiresistive Gas Sensing At Room Temperature, Yale Wang

Theses and Dissertations

Chemiresistive sensors are the most widely investigated gas sensors due to their ease in fabrication, cost-effectiveness, simplicity of operation, and offer advances in miniaturization. Up to date, typical and well-researched resistive-type sensing materials include semiconductor metal oxides, noble metals, carbon-based nanomaterials (e.g., graphene and carbon nanotubes), and conducting polymers. Gas sensors based on a single material were found difficult to meet the practical requirements for multi-sensing properties, including sensitivity, selectivity, speed of response/recovery, stability, limit of detection, and room temperature operation. Rational design through a combination of chemically or electronically dissimilar nanomaterials is an effective route to enhancing gas sensing …


Oxone® Mediated Tempo-Oxidized Cellulose Nanomaterials: Material Characterization, Ultrafiltration Membrane Separations, And Thin Film Composite Gas Transport Analysis, John Phillips Moore May 2021

Oxone® Mediated Tempo-Oxidized Cellulose Nanomaterials: Material Characterization, Ultrafiltration Membrane Separations, And Thin Film Composite Gas Transport Analysis, John Phillips Moore

Graduate Theses and Dissertations

Cellulose nanomaterials (CNMs) are derived from plant matter and are comprised of nanoscopic cellulose crystals and fibers. They have a diverse set of applications, from cosmetics to oil recovery. This study focuses on the properties of Oxone® mediated TEMPO-oxidized cellulose nanomaterials (OTO-CNMs) and their use in controlling the transport properties of polymeric substrates. Synthesis and characterization of cellulosic nanoparticles have resulted in the creation of OTO-CNMs with properties that increase hydrophilicity. With added hydrophilicity, OTO-CNMs possess lower fouling propensity, making them ideal membrane additive for transport limited separations such as hemodialysis.

To utilize the material and unique properties thereof, this …


Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor Aug 2020

Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor

Boise State University Theses and Dissertations

The energy-water nexus poses an integrated research challenge, while opening up an opportunity space for the development of energy efficient technologies for water remediation. Capacitive Deionization (CDI) is an upcoming reclamation technology that uses a small applied voltage applied across electrodes to electrophoretically remove dissolved ionic impurities from wastewater streams. Similar to a supercapacitor, the ions are stored in the electric double layer of the electrodes. Reversing the polarity of applied voltage enables recovery of the removed ionic impurities, allowing for recycling and reuse. Simultaneous materials recovery and water reclamation makes CDI energy efficient and resource conservative, with potential to …


Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson May 2020

Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson

Arts & Sciences Electronic Theses and Dissertations

The large absorption cross sections and the tunability of the energetic spacings between the states in the conduction (CB) and valence band (VB) within a semiconductor nanoparticle (NP) make them promising media for capturing electromagnetic radiation and converting it into charge carriers, or electricity. In photovoltaic devices that incorporate semiconductor NPs, it would be ideal if every photon could be absorbed by a NP and the carriers could be collected with perfect efficiency and without loss of energy. The relaxation pathways of the carriers within the NPs down to the band edge and their fate at the band edge contribute …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The …


Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu Jan 2019

Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu

Williams Honors College, Honors Research Projects

This work investigates the use of two different polyols, xylitol (Xyl) and erythritol (Ery), in conjunction with boron nitride (BN) aerogels, for the purpose of creating thermally conductive composites. While the BN filler in Xyl composites achieved a high anisotropic thermal conductivity of up to 4.53 W/m-K at 18.2 weight percent filler loading, they do not exhibit good phase-change material qualities due to a low solidification enthalpy even at low cooling rates. Alternatively, the BN-Ery composites have shown promising results with a solidification enthalpy of 225.14 J/g and a melting enthalpy of 385.84 J/g at a heat rate of 5 …


Multifunctional Nanocomposites Based On Bacterial Cellulose, Qisheng Jiang Dec 2018

Multifunctional Nanocomposites Based On Bacterial Cellulose, Qisheng Jiang

McKelvey School of Engineering Theses & Dissertations

Cellulose is biodegradable, renewable, and abundant in nature thus cellulose (or paper)-based products can be inexpensively produced and recycled. Among cellulosic materials, bacterial nanocellulose (BNC) draws a special research attention due to the inherent three-dimensional nanofibrous structure, excellent mechanical flexibility, high purity and well-defined surface chemistry, and cost-efficient, scalable and environment-friendly synthesis. BNC can be biosynthesized by Gluconacetobacter xylinus, which is the most characterized BNC producer among various microorganisms. BNC is composed of highly pure cellulose nanofibrils, produced from well-defined dextrose through biochemical steps and subsequent self-assembling of the secreted cellulose fibrils which has the dimension ranges from 25 to …


Multifunctional Nanocomposites Based On Bacterial Cellulose, Qisheng Jiang Dec 2018

Multifunctional Nanocomposites Based On Bacterial Cellulose, Qisheng Jiang

McKelvey School of Engineering Theses & Dissertations

Cellulose is biodegradable, renewable, and abundant in nature thus cellulose (or paper)-based products can be inexpensively produced and recycled. Among cellulosic materials, bacterial nanocellulose (BNC) draws a special research attention due to the inherent three-dimensional nanofibrous structure, excellent mechanical flexibility, high purity and well-defined surface chemistry, and cost-efficient, scalable and environment-friendly synthesis. BNC can be biosynthesized by Gluconacetobacter xylinus, which is the most characterized BNC producer among various microorganisms. BNC is composed of highly pure cellulose nanofibrils, produced from well-defined dextrose through biochemical steps and subsequent self-assembling of the secreted cellulose fibrils which has the dimension ranges from 25 to …


Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu Nov 2018

Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu

LSU Doctoral Dissertations

Nowadays, the fast-increasing energy demand for efficient, sustainable and environmentally-friendly energy storage devices remains a significant and challenging issue. Lithium ion batteries (LIBs) have been widely used as commercial energy devices in portable electronics and also shown great promise in upcoming large-scale applications due to their advantages of environmental safety, efficiency in energy delivering and light weight. However, due to their limited capacity, energy densities and cycle ability, LIBs still need further improvement to expand their applications to a larger field, especially electric vehicle (EVs) and hybrid electric vehicles (HEVs), in which energy storage devices with large capacity and high …


Synthesis Of Crumpled Graphene And Titanium Dioxide Based–Nanomaterials And The Application To Carbon Dioxide Photoreduction, Yao Nie Aug 2018

Synthesis Of Crumpled Graphene And Titanium Dioxide Based–Nanomaterials And The Application To Carbon Dioxide Photoreduction, Yao Nie

McKelvey School of Engineering Theses & Dissertations

With the rapid development of the economy, increasing combustion of fossils fuels has caused an increase in the atmospheric carbon dioxide (CO2) level, and has led to global climate change. As a mitigation approach, CO2 capture and conversion (CCC) can not only capture CO2, but also convert it to useable products, such as hydrocarbon fuels. Photocatalytic reduction is an attractive CCC option that directly harnesses inexpensive and abundant solar energy. Titanium dioxide (TiO2) is a widely used semiconductor for photocatalysis, and graphene nanosheets are a promising material for use in fabricating graphene-TiO2 hybridized photocatalysts. To realize the application of these …


Development Of Nanostructures By Atomic And Molecular Layer Deposition, Andrew P. Lushington Apr 2018

Development Of Nanostructures By Atomic And Molecular Layer Deposition, Andrew P. Lushington

Electronic Thesis and Dissertation Repository

Atomic layer deposition (ALD) is a thin film deposition technique that has a rich history of being an enabling technique. This vapor phase deposition process can produce a variety of thin films and nanostructures. ALD is based on sequential, self-limiting reactions and provides angstrom level control over film growth. Furthermore, ALD allows for conformal deposition on high-aspect ratio structures and can provide tunable film composition. As nanotechnology marches forward, the development of nanomaterials has significantly advanced. Additional functionality can be imparted to nanomaterials by using surface modification techniques. Given the advantages of ALD, this technique has become a powerful tool …


Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick Jan 2018

Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick

Theses and Dissertations (Comprehensive)

Materials at the nanoscale have different chemical, structural, and optoelectrical properties compared to their bulk counterparts. As a result, such materials, called nanomaterials, exhibit observable differences in certain physical phenomena. One such resulting phenomenon called the piezoelectric effect has played a crucial role in miniature self-powering electronic devices called nanogenerators which are fabricated by using nanostructures, such as nanowires, nanorods, and nanofilms. These devices are capable of harvesting electrical energy by inducing mechanical strain on the individual nanostructures. Electrical energy created in this manner does not have environmental limitations. In this thesis, important coupled effects, such as the nonlinear piezoelectric …


Advanced Purification And Direct-Write 3d Nanoprinting Via Focused Electron Beam Induced Deposition, Brett Bloxton Lewis Aug 2017

Advanced Purification And Direct-Write 3d Nanoprinting Via Focused Electron Beam Induced Deposition, Brett Bloxton Lewis

Doctoral Dissertations

This dissertation addresses three difficulties with focused electron beam induced deposition preventing broader application; purity, spatial control, and mechanical characterization.

Focused electron beam induced deposition (FEBID) has many advantages as a nanoscale fabrication tool. It is compatible for implementation into current lithographic techniques and has the potential to direct-write in a single step nanostructures of a high degree of complexity. FEBID is a very versatile tool capable of fabricating structures of many different compositions ranging from insulating oxides to conducting metals.

Due to the complexity of the technique and the difficulty in directly measuring many important variables, FEBID has remained …


Application Of Molecular Layer Deposition For Graphite Anodes In Lithium-Ion Batteries And Porous Thin-Film Materials, Craig L. Langford Jul 2016

Application Of Molecular Layer Deposition For Graphite Anodes In Lithium-Ion Batteries And Porous Thin-Film Materials, Craig L. Langford

Electronic Thesis and Dissertation Repository

With climate change occurring because of greenhouse gas emissions, the demand for emission free transportation has led to the development of electric vehicles. Improving the batteries’ cycling stability, capacity and safety have been the leading challenges to compete with gasoline and diesel engines. With advances in thin-film deposition techniques via atomic and molecular layer deposition, ultrathin films can be deposited to control the surface chemistry of the battery’s active materials. This thesis aims to understand two main aspects of molecular layer deposition. First, how it can influence solid electrolyte interface formation on the graphite surface during cycling in a lithium-ion …


Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari Apr 2016

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari

Electronic Thesis and Dissertation Repository

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO2), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrifical hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO2 at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a …


Bio-Inspired Synthesis Of Nanostructured Materials On Substrates For Environmental And Energy Applications, Xinghua Meng Meng Jan 2016

Bio-Inspired Synthesis Of Nanostructured Materials On Substrates For Environmental And Energy Applications, Xinghua Meng Meng

Wayne State University Dissertations

It is still a challenging task to develop simple methods for facile synthesis of functional nanostructures on substrates under mild conditions without using expensive instruments. We have successfully developed a bio-inspired method using simple diaphragm-assisted system to synthesize functional nanostructures on various substrates under mild conditions. We have systematically studied the effects of experimental parameters on the formation of nanostructures under controlled conditions. The fundamental mechanism involved has been systematically studied and revealed. By growing the unique networks of nanostructures on a piece of substrate, a double-rough surface, with structures at both nanoscale and microscale, has been achieved, showing interesting …


A High Pressure Cell For Spark Plasma Sintering, Justin Robert Carmichael Aug 2015

A High Pressure Cell For Spark Plasma Sintering, Justin Robert Carmichael

Masters Theses

Many nanostructured materials have been shown to have performance gains strongly dependent on the grain size in the material. Nanostructured thermoelectric materials for instance have found great performance increases through reduction of the grain sizes, due mostly to the scattering of phonons while retaining a good electrical conductivity. Other such examples abound where the grain size plays an important role in the performance of the material, including magnetic materials, proton fuel cell membranes, or simply improving the mechanical properties of a system through the Hall-Petch relationship.

A considerable amount of effort has been applied into reducing the grain size of …


Preparation And Characterization Of Copper-Doped And Silver-Doped Titanium Dioxide Nano-Catalysts For Photocatalytic Applications, Haya Abdel Ra'ouf Ahmed May 2015

Preparation And Characterization Of Copper-Doped And Silver-Doped Titanium Dioxide Nano-Catalysts For Photocatalytic Applications, Haya Abdel Ra'ouf Ahmed

Theses

The goal of this work was to improve the performance of TiO2 nanomaterials by increasing their optical activities by shifting the onset of the response from the UV to the visible-light region. Among the several ways to achieve this goal, doping TiO2 nanomaterials with other elements (e.g. metals) was selected to narrow the band gap and enhance the optical properties of TiO2 nanomaterials. In this work, we have prepared Cu-doped TiO2 nano-catalysts, characterized them and studied their properties, and the optical ones in particular. The Ag-doped TiO2 catalyst was prepared by the sol-gel method while …


Development Of Novel Nanomaterials Based On Silicon And Graphene For Lithium Ion Battery Applications, Yuhai Hu Sep 2014

Development Of Novel Nanomaterials Based On Silicon And Graphene For Lithium Ion Battery Applications, Yuhai Hu

Electronic Thesis and Dissertation Repository

Electrochemical energy storage is one of the important strategies to address the strong demand for clean energy. Rechargeable lithium ion batteries (LIBs) are one of the typical electrochemical devices and have been used in a great number of areas. Now, the challenge for the LIB research is to make the batteries carry higher energy density so as to fulfill the demand of the emerging markets, particularly, electric vehicles and portable smart electronics. In this regard, the present commercial anode material can not meet this requirement. Much effort is being made toward either exploring new morphologies of carbon materials or searching …


Novel Bimetallic Plasmonic Nanomaterials, Ritesh Sachan May 2013

Novel Bimetallic Plasmonic Nanomaterials, Ritesh Sachan

Doctoral Dissertations

Plasmonic nanomaterials have attracted a lot of attention recently due to their application in various fields such as chemical and biological sensing, catalysis, energy harvesting and optical devices. However, there is a need to address several outstanding issues with these materials, including cost-effective synthesis, tunability in plasmonic characteristics, and long term stability. In this thesis, we have focused on bimetallic nanoparticles (NPs) of Ag and Co due to their immiscibility as well as their individual properties. First, a pulsed laser induced dewetting route was used to synthesize Ag-Co bimetallic plasmonic NPs. An synthesis parameter space was derived to show the …


Tuning The Performance Of Nanocarbon-Based Gas Sensors Through Nanoparticle Decoration, Shumao Cui May 2013

Tuning The Performance Of Nanocarbon-Based Gas Sensors Through Nanoparticle Decoration, Shumao Cui

Theses and Dissertations

Tin dioxide (SnO2) is a well–known gas sensing material, but it becomes sensitive only at elevated temperatures (e.g., above 200 °C). Nanoparticles (NPs) combined with nanocarbons, such as carbon nanotubes (CNTs) and graphene, form a new class of hybrid nanomaterials that can exhibit fascinating gas sensing performance due to tunable electron transfer between NPs and nanocarbons induced by gas adsorption. Indeed, sensors made of SnO2 NPs&ndascoated CNTs have shown outstanding room–temperature sensing performance to various gases, including those that are undetectable by either SnO2 or CNTs alone.

The objectives of this dissertation study are to synthesize …


Controlled Synthesis Of One Dimensional Nanostructured Materials And Their Applications As Catalyst Supports In Proton Exchange Membrane Fuel Cells, Mohammad Norouzi Banis Dec 2012

Controlled Synthesis Of One Dimensional Nanostructured Materials And Their Applications As Catalyst Supports In Proton Exchange Membrane Fuel Cells, Mohammad Norouzi Banis

Electronic Thesis and Dissertation Repository

Nanomaterials have attracted significant interest in the past decade due to their unique structure and properties compared to their bulk counterparts. Nanomaterials-based solutions can address challenges in various technologies such as proton exchange membrane fuel cells (PEMFCs). PEMFC is an innovative energy conversion technology to directly convert chemical energy to electrical energy by using hydrogen as fuel. However, the current PEMFC system still faces significant technological roadblocks which have to be overcome before the system can become economically viable. A major impediment to the commercialization of PEMFC is the high cost of materials and manufacturing and stability, which is primarily …


Characteristics And Functionalities Of Natural And Bioinspired Nanomaterials, Lijin Xia May 2012

Characteristics And Functionalities Of Natural And Bioinspired Nanomaterials, Lijin Xia

Doctoral Dissertations

Green nanoscience is a rapidly emerging field that aims to achieve the maximum performance and benefits from nanotechnology, while minimizing the impact on the environment. In this study, several methods for the green nanomanufacturing of biomedically important nanomaterials, specifically through the use of natural plants, have been extensively investigated. It was found that natural nanomaterials are inherent within plants, and can be further manipulated for potential biomedical applications. In addition, the metabolites and reductive capacity of plant extracts can be used to synthesize metallic nanoparticles with advantages over semi-conductor based nanomaterials. Nanoparticles were found to exist in the extracts produced …


Direct Measurement Of Thicknesses, Volumes Or Compositions Of Nanomaterials By Quantitative Atomic Number Contrast In High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy, Biao Yuan Jan 2012

Direct Measurement Of Thicknesses, Volumes Or Compositions Of Nanomaterials By Quantitative Atomic Number Contrast In High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy, Biao Yuan

Electronic Theses and Dissertations

The sizes, shapes, volumes and compositions of nanoparticles are very important parameters determining many of their properties. Efforts to measure these parameters for individual nanoparticles and to obtain reliable statistics for a large number of nanoparticles require a fast and reliable method for 3-D characterization. In this dissertation, a direct measurement method for thicknesses, volumes or compositions of nanomaterials by quantitative atomic number contrast in High-Angle Annular Dark-Field (HAADF) Scanning Transmission Electron Microscopy (STEM) is presented. A HAADF detector collects electrons scattered incoherently to high angles. The HAADF signal intensity is in first-order approximation proportional to the sample thickness and …