Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Theses/Dissertations

Mechanical properties

Institution
Publication Year
Publication
File Type

Articles 1 - 30 of 45

Full-Text Articles in Engineering

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi Feb 2024

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


The Characterization And Nanomechanical Properties Of Microstructurally Complex Systems, Kerry Ann Baker Jan 2024

The Characterization And Nanomechanical Properties Of Microstructurally Complex Systems, Kerry Ann Baker

Theses and Dissertations--Chemical and Materials Engineering

Since the dawn of civilization, the use of metals has played an integral role in the evolution of human society. Over the years, and with the introduction of new engineering and science, we have learned how to combine metals to create new metallic systems. We have expanded our understanding of dealloying and chemical reactions, and, in doing so, we created nanoporous metals. Our use of metals has evolved from basic alloys such as bronze and steel to more complex alloys such as multi-principal element alloys. Nanoporous gold is an advanced metallic system that can be created through the dealloying process. …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Synergistic Strategies In Sinter-Based Material Extrusion (Mex) 3d Printing Of Copper: Process Development, Product Design, Predictive Maps And Models., Kameswara Pavan Kumar Ajjarapu Dec 2023

Synergistic Strategies In Sinter-Based Material Extrusion (Mex) 3d Printing Of Copper: Process Development, Product Design, Predictive Maps And Models., Kameswara Pavan Kumar Ajjarapu

Electronic Theses and Dissertations

3D printing pure copper with high electrical conductivity and exceptional density has long been challenging. While laser-based additive manufacturing technologies suffered due to copper's highly reflective nature towards laser beams, parts printed via binder-assisted technologies failed to reach over 90% IACS (International Annealed Copper Standard), electrical conductivity. Although promising techniques such as binder jetting, filament, and pellet-based 3D printing that can print copper exist, they however still face difficulties in achieving both high sintered densities and electrical conductivity values. This is due to a lack of comprehensive understanding of property evolution from green to sintered states and the strategies that …


Spatially Resolved Elastic Modulus Of Magnesium Silicate Hydrate: A Cementitious Material, Arif Syed Dec 2023

Spatially Resolved Elastic Modulus Of Magnesium Silicate Hydrate: A Cementitious Material, Arif Syed

Material Science and Engineering Theses

Magnesium-based cements such as magnesium silicate hydrate (MSH) have drawn interest as an environmentally friendly substitute for ordinary Portland cement because of their potential for reduced carbon footprint. The precise determination of these materials' elastic moduli is important to better assess their mechanical performance. Atomic force microscopy (AFM) is an effective tool for precise and spatially resolved quantification of nanomechanical characteristics of materials, including thin films. In this study, elastic modulus maps of MSH grown on single crystal mica surfaces were obtained using amplitude modulation-frequency modulation AFM. The effects of the Mg:Si ratio and morphology on the elastic modulus of …


Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang Nov 2023

Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang

Electronic Theses and Dissertations

Metallic friction materials currently used in industry may adversely impact the environment. Substitutions for metals in friction materials, on the other hand, can introduce operational safety issues and other unforeseeable issues such as thermal-mechanical instabilities and insufficient strength. In view of it, this dissertation focuses on developing different kinds of materials from simple structure to complex structure and evaluating the material properties with the assistance of molecular dynamics (MD) tools at the nano scale.

First, the concept of the contacted surfaces in friction at the atomic scale was introduced in order to get accurate understanding of the friction process compared …


Effect Of Boron In Cast Iron, Suyash Durendra Pawaskar Aug 2022

Effect Of Boron In Cast Iron, Suyash Durendra Pawaskar

Masters Theses

"Boron, mostly considered a residual element, has started to cause issues in the cast iron foundries by causing a decrease in the strength of pearlitic gray and ductile iron castings. Because of the increase in the use of boron-added steel scrap from automotive steel and a lack of agreement on the critical levels of boron in cast iron, foundries are facing difficulties in controlling the microstructure of gray iron castings when boron is present. The current investigation was designed to analyze the effects of boron in cast irons and predict a mechanism to understand its effects with a vision of …


Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley May 2022

Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley

All Theses

Nature is frequently turned to for inspiration for the creation of new materials. Insect antennae are hollow, blood-filled fibers with complex shape, and are cantilevered at the head. The antenna is muscle-free, but the insect can controllably flex, twist, and maneuver it laterally. To explain this behavior, a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly) was performed. These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle fibers (Manduca sexta) or strain-adaptive fibers that stiffen when stretched (Vanessa cardui …


Characterization Of Material For Composite Automotive Components, Thomas J. Chang Dec 2021

Characterization Of Material For Composite Automotive Components, Thomas J. Chang

Electronic Thesis and Dissertation Repository

A composite had been widely used for the lightweighting purpose amid increasing environmental concerns. Among composite manufacturing processes, compression molding is widely used for automotive parts. During compression molding, the mold geometry and molding process conditions significantly influence the fiber configuration and the mechanical performance.

Hence, this thesis aims to characterize the microstructural and mechanical properties of the complex shaped composite automotive components: outer seatback and inner seatback. Both parts were compression molded using commercial glass mat thermoplastic sheet with long glass fibers (30mm-50mm) embedded in the polyamide resin. The microstructural characterization results showed that the microstructural properties are influenced …


An Investigation Into Energy-Material Properties Interaction In Additive Manufacturing Of Polymers., Pu Han Dec 2021

An Investigation Into Energy-Material Properties Interaction In Additive Manufacturing Of Polymers., Pu Han

Electronic Theses and Dissertations

Additive manufacturing (AM), known as three-dimensional (3D) printing, is a fabrication process to build 3D objects layer by layer based on computer aided design (CAD) model or digital 3D model. Fused filament fabrication (FFF) has become a preferred method for additive manufacturing due to its cost-effectiveness and flexibility. However, the parts built using FFF process suffer from lower mechanical strength compared to that fabricated using traditional method and rough surface finish. With this motivation, this dissertation aims to develop and implement a novel in-process laser assisted technique on FFF to heal the microstructure of FFF built objects by enhancing reptation …


Strengthening Of 7175 Aluminum Alloy Through Multi-Step Aging Process, Colin E. Masterson, Ryland W. Jolliffe Jun 2021

Strengthening Of 7175 Aluminum Alloy Through Multi-Step Aging Process, Colin E. Masterson, Ryland W. Jolliffe

Materials Engineering

7175 is a heat-treatable aluminum alloy commonly used in aerospace forgings. This alloy is aged with a multi-step heat treatment. This treatment must balance strength with stress corrosion cracking resistance through a degree of overaging. The team was tasked by Weber Metals to increase the strength of this treatment without sacrificing stress corrosion cracking resistance. Both two-step and retrogression and reaging treatments were tested in experiments to find a heat treatment that could increase the yield and tensile strength by 1-2 ksi while maintaining a minimum electrochemical conductivity equivalence of 38% relative to copper. Two-step aging is the more conventional …


Determination Of Hydrogel Degradation By Passive Mechanical Testing, Avery Rosh-Gorsky Jan 2021

Determination Of Hydrogel Degradation By Passive Mechanical Testing, Avery Rosh-Gorsky

Honors Theses

This paper details a new technique to measure the mechanical properties of ETTMP PEGDA hydrogels using Hertz Contact Theory and simultaneously analyze both the model drug release and gel erosion in situ. This method involves curing a drug loaded hydrogel in a standard cuvette and placing a glass bead and phosphate buffer solution (PBS). Over time, the cross-linked network of the hydrogel breaks down, and, as a result, the ball sinks into the hydrogel. This method provides a macroscopic and inexpensive way to continuously and passively measure properties of the hydrogel as the hydrogel degrades. By plotting both the …


Exploring Rapid Solidification And Equal Channel Angular Pressing In The Fabrication Of Mg-Based Alloys For Medical Applications, Emily Tom Jan 2021

Exploring Rapid Solidification And Equal Channel Angular Pressing In The Fabrication Of Mg-Based Alloys For Medical Applications, Emily Tom

Dissertations, Master's Theses and Master's Reports

The development of magnesium bioresorbable implants has become increasingly popular due to the increased need for temporary implants and magnesium’s excellent biocompatibility and suitable elastic modulus. Even though magnesium is an excellent candidate, when alloyed with other metals magnesium’s corrosion rate becomes too rapid for bioresorbable medical applications. The investigation into novel processing techniques to control the formation of precipitates to improve mechanical strength and ductility as well as corrosion rates has become of interest. This work investigates the combination of two nonequilibrium processing techniques, rapid solidification (RS) and equal channel angular pressing (ECAP), and the effects it has on …


The Effect Of Compaction Temperature And Pressure On Mechanical Properties Of 3d Printed Short Glass Fiber Composites, Pushpashree Jain Ajith Kumar Jain Dec 2020

The Effect Of Compaction Temperature And Pressure On Mechanical Properties Of 3d Printed Short Glass Fiber Composites, Pushpashree Jain Ajith Kumar Jain

Mechanical & Aerospace Engineering Theses & Dissertations

Among many thermoplastics that are used in engineering, polyamide 6 (nylon 6) is an extremely versatile engineering thermoplastic. Nylon filled with glass fibers has higher mechanical strength and high wear resistance than general purpose nylon. 3D printed composites, based on fused filament modeling, typically suffer from poor bead-to-bead bonding and relatively high void content, limiting their mechanical properties

This thesis explores the effect of compaction pressure and temperature on improving the mechanical properties of 3D printed composites. Engineering moduli in the printing and transverse to printing direction, as well as ultimate strength were measured using the tensile testing with Digital …


Materials-Processing Relationships For Metal Fused Filament Fabrication Of Ti-6al-4v Alloy., Paramjot Singh May 2020

Materials-Processing Relationships For Metal Fused Filament Fabrication Of Ti-6al-4v Alloy., Paramjot Singh

Electronic Theses and Dissertations

Additive manufacturing (AM) is at the mainstream to cater the needs for rapid tooling and small-scale part production. The metal AM of complex geometries is widely accepted and promoted in the industry. While several metal AM technologies exist and are matured to a level where expectation in terms of design and properties are possible to realize. But the metal AM suffers from the heavy expense to acquire equipment, isotropic property challenges, and potential hazards to work with loose reactive metal powder. With this motivation, the dissertation aims to develop the fundamental aspects to print metal parts with bound Ti-6Al-4V powder …


Effect Of Cobalt In Thin Wall Ductile Iron And Solid Solution Strengthened Ferritic Ductile Iron, Alejandra I. Almanza Jan 2020

Effect Of Cobalt In Thin Wall Ductile Iron And Solid Solution Strengthened Ferritic Ductile Iron, Alejandra I. Almanza

Dissertations, Master's Theses and Master's Reports

Ductile Iron is a material that is constantly evolving. Consequently, the ferrous industry is not only focusing on lightweighting but also on improving the impact strength and fracture toughness of typical ferritic-pearlitic ductile iron grades and solid solution strengthened ferritic ductile irons. Recently, the demand for thin-wall ductile iron and solid solution strengthened ferritic ductile iron grades has increased. The challenges behind the fabrication of these two ductile iron materials are the presence of carbides and the embrittlement of ferrite. In response, research has been focused on looking at alternative methods that can mitigate carbide formation in thin sections and …


Microstructure And Mechanical Behavior Of Metastable Beta Type Titanium Alloys, Chirag Dhirajlal Rabadia Jan 2020

Microstructure And Mechanical Behavior Of Metastable Beta Type Titanium Alloys, Chirag Dhirajlal Rabadia

Theses: Doctorates and Masters

Current biomaterials such as stainless steel, Co-Cr alloys, commercially pure titanium and Ti-6Al- 4V either possess poor mechanical compatibility and/or produce toxic effects in the human body after several years of usage. Consequently, there is an enormous demand for long-lasting biomaterials which provide a better combination of mechanical, corrosion and biological properties. In addition to this, alloys used in high-strength applications possess either high-strength or large plasticity. However, a high-strength alloy should possess a better blend of both strength and plasticity when used in high-strength applications. Metastable β-titanium alloys are the best suited alloys for biomedical and high-strength applications because …


Influence Of Mechanical Properties Of Paper Coating On The Crack At The Fold Problem, Seyyed Mohammad Hashemi Najafi May 2019

Influence Of Mechanical Properties Of Paper Coating On The Crack At The Fold Problem, Seyyed Mohammad Hashemi Najafi

Electronic Theses and Dissertations

Paper coating layers are subject to various stresses and deformations in many converting processes such as calendering, printing, slitting, and folding of the paper. In some cases, products may crack during folding to generate a defect called cracking at the fold (CAF). The parameters that influence these defects are not well understood. The overall goal of this thesis is to better understand the CAF behavior as related to material properties of the coating layer.

A method was developed to produce free-standing pigmented coating layers thick enough to be tested in bending as well as tension. The mechanical properties of these …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


Development Of Stage-I Tempered High Strength Cast Steel For Ground Engaging Tools, Viraj Ashok Athavale Jan 2019

Development Of Stage-I Tempered High Strength Cast Steel For Ground Engaging Tools, Viraj Ashok Athavale

Doctoral Dissertations

"Ground Engaging Tools (GET) are the expendable replacement parts used in heavy machinery used with mining or construction equipment. GET’s protect the expensive machine components from the wear and tear found common in high-impact or high-abrasion environments. The goal of this project is to develop advanced next-generation alloy choices that outperforms the existing GET materials. A method of predicting tempered hardness of mixed microstructures was formulated. Using this model, two alloy series viz. Cr-Ni-Mo and Mn-Si-Mo-V were proposed and experimented with the goal of obtaining a high strength and impact resistant cast steel. Cast iterations of Cr-Ni-Mo alloy series were …


Characterization Of Process Induced Defects In Laser Powder Bed Fusion Processed Alsi10mg Alloy, Edward Stugelmayer Apr 2018

Characterization Of Process Induced Defects In Laser Powder Bed Fusion Processed Alsi10mg Alloy, Edward Stugelmayer

Graduate Theses & Non-Theses

Additive manufacturing using laser powder bed fusion (AM-LPBF) methods have recently experienced rapid growth and development, having the potential to replace manufacturing by plastic deformation, precision machining, or casting. AM offers advantages such as the freedom to design highly complex geometries, time and cost savings through material usage efficiency and shortened production cycles, and the potential for improved mechanical properties. Process induced defects, however, result in degradation and scattering of mechanical properties and hinder the widespread adoption of AM-LPBF in industry. This investigation focuses on the effects of varying energy density and build orientation on the evolution of process induced …


Evaluation Of Metallurgical And Mechanical Properties Of Alsi10mg Produced By Selective Laser Melting, Luke J. Suttey Apr 2018

Evaluation Of Metallurgical And Mechanical Properties Of Alsi10mg Produced By Selective Laser Melting, Luke J. Suttey

Graduate Theses & Non-Theses

Selective laser melting (SLM) additive manufacturing (AM) of metal powders has long been a focus in the study of AM due to the possibility of weight reduction, complex shape formation, and production cost savings. Although applicable to a variety of metals SLM AM of the AlSi10Mg alloy was studied in an attempt to characterize the effect of processing parameter and build angle variation on the final microstructural, fractographic, and mechanical properties of parts produced without any thermal post-processing techniques. Research was conducted on five build angles (0°, 30°, 45°, 60°, and 90°), and three Global Energy Densities (GED) (37.15, 45.39, …


Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal Feb 2018

Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal

Electronic Thesis and Dissertation Repository

Scaffolds are key components for bone tissue engineering and regeneration. They guide new bone formation by mimicking bone extracellular matrix for cell recruitment and proliferation. Ideally, scaffolds for bone tissue engineering need to be osteoconductive, osteoinductive, porous, degradable and mechanically competent. As a single material can not provide all these requirements, composites of several biomaterials are viable solutions to combine various properties. However, conventional composites fail to fulfil these requirements due to their distinct phases at the microscopic level. Organic/inorganic (O/I) class II hybrid biomaterials, where the organic and inorganic phases are chemically crosslinked on a molecular scale, hence the …


Characterization Of 3d Printed Polylactic Acid/ Polycaprolactone/Titanium Dioxide Composites For Bone Replacement And Grafting, Sandra Elena Najera Beltran Jan 2018

Characterization Of 3d Printed Polylactic Acid/ Polycaprolactone/Titanium Dioxide Composites For Bone Replacement And Grafting, Sandra Elena Najera Beltran

Open Access Theses & Dissertations

A material that mimics the properties of bones was developed by optimizing the ratio of polymer composites of polylactic acid (PLA) and poly-ε-caprolactone (PCL), containing small amounts of titanium oxide (TiO2). Although titanium-based alloys have commonly been used for bone replacement procedures due to their biocompatibility with the human body and their mechanical properties, stress shielding continues to be a problem. The structure of a bone has a porosity which permits the flow of nutrients, blood, oxygen and minerals, and is an issue at the time of creating bone replacements using conventional methods. PLA and PCL have been used in …


Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites For Extrusion-Based Additive Manufacturing, Lu Wang Dec 2017

Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites For Extrusion-Based Additive Manufacturing, Lu Wang

Electronic Theses and Dissertations

Compared to conventional manufacturing process, additive manufacturing (AM) offers free-form design, lighter and more ergonomic products, short lead time and less waste. Extrusion-based AM can be used to print thermoplastics. However, extrusion-based AM has processing challenges in printing semi-crystalline thermoplastics, for instance, polypropylene (PP). Cellulose nanofibrils (CNF) are one type of cellulose nanofibers that are produced from pulp fibers. CNF has extraordinary properties which make it an ideal candidate to reinforce polymers. Spray-dried CNF (SDCNF) is able to be incorporated into thermoplastic matrices without modifying conventional processing procedures.

The mechanical properties of 3D printed plastic parts have been considered significantly …


Molecular Modeling Of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy, Matthew Radue Jan 2017

Molecular Modeling Of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy, Matthew Radue

Dissertations, Master's Theses and Master's Reports

Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices.

The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young’s modulus, yield point, and Poisson’s ratio …


Microstructural Evolution And Mechanical Properties Of Zn-Ti Alloys For Biodegradable Stent Applications, Zhiyong Yin Jan 2017

Microstructural Evolution And Mechanical Properties Of Zn-Ti Alloys For Biodegradable Stent Applications, Zhiyong Yin

Dissertations, Master's Theses and Master's Reports

Stents made of biodegradable metallic materials are increasingly gaining interest within the biomaterials field because of their superior mechanical properties and biodegradation rates as compared to polymeric materials. Zinc and its alloys have been developed and investigated as possible candidates for biodegradable stent applications in the last five years. This study intended to formulate and characterize a new series of Zn-Ti alloys, with titanium additions of less than 1-3 wt%, with the primary objective to develop and select an alloy that meets benchmark values of mechanical properties for biodegradable stents. A series of Zn-Ti alloys was formulated through vacuum induction …


Processing, Microstructure And Mechanical Properties Of Beta-Type Titanium Porous Structures Made By Additive Manufacturing, Yujing Liu Jan 2017

Processing, Microstructure And Mechanical Properties Of Beta-Type Titanium Porous Structures Made By Additive Manufacturing, Yujing Liu

Theses: Doctorates and Masters

Tissue engineering through the application of a low modulus, high strength format as a potential approach for increasing the durability of bone implants has been attracting significant attention. Titanium alloys are widely used for biomedical applications because of their low modulus, high biocompatibility, specific strength and corrosion resistance. These reasons affirm why titanium alloy is selected as the specific material to research. The development of low modulus biomaterials is considered to be an effective method to remove the mismatch between biomaterial implants and surrounding bone tissue, thereby reducing the risk of bone resorption. So far, Ti–24Nb–4Zr–8Sn alloy (abbreviated hereafter as …


Slm Processing-Microstructure-Mechanical Property Correlation In An Aluminum Alloy Produced By Additive Manufacturing, Bryce Abstetar Oct 2016

Slm Processing-Microstructure-Mechanical Property Correlation In An Aluminum Alloy Produced By Additive Manufacturing, Bryce Abstetar

Graduate Theses & Non-Theses

Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all …


Improving The Capacity, Durability And Stability Of Lithium-Ion Batteries By Interphase Engineering, Qinglin Zhang Jan 2016

Improving The Capacity, Durability And Stability Of Lithium-Ion Batteries By Interphase Engineering, Qinglin Zhang

Theses and Dissertations--Chemical and Materials Engineering

This dissertation is focus on the study of solid-electrolyte interphases (SEIs) on advanced lithium ion battery (LIB) anodes. The purposes of this dissertation are to a) develop a methodology to study the properties of SEIs; and b) provide guidelines for designing engineered SEIs. The general knowledge gained through this research will be beneficial for the entire battery research community.