Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Series

Thin films

Institution
Publication Year
Publication

Articles 1 - 30 of 35

Full-Text Articles in Engineering

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler Mar 2024

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler

Faculty Publications

Ferroelectricity in hafnium zirconium oxide (Hf1−xZrxO2) and the factors that impact it have been a popular research topic since its discovery in 2011. Although the general trends are known, the interactions between fabrication parameters and their effect on the ferroelectricity of Hf1−xZrxO2 require further investigation. In this paper, we present a statistical study and a model that relates Zr concentration (x), film thickness (tf), and annealing temperature (Ta) with the remanent polarization (Pr) in tungsten (W)-capped Hf1−xZrxO2. …


Intrinsic And Atomic Layer Etching Enhanced Area-Selective Atomic Layer Deposition Of Molybdenum Disulfide Thin Films, Jake Soares, Wesley Jen, John D. Hues, Drew Lysne, Jesse Wensel, Steven M. Hues, Elton Graugnard Sep 2023

Intrinsic And Atomic Layer Etching Enhanced Area-Selective Atomic Layer Deposition Of Molybdenum Disulfide Thin Films, Jake Soares, Wesley Jen, John D. Hues, Drew Lysne, Jesse Wensel, Steven M. Hues, Elton Graugnard

Materials Science and Engineering Faculty Publications and Presentations

For continual scaling in microelectronics, new processes for precise high volume fabrication are required. Area-selective atomic layer deposition (ASALD) can provide an avenue for self-aligned material patterning and offers an approach to correct edge placement errors commonly found in top-down patterning processes. Two-dimensional transition metal dichalcogenides also offer great potential in scaled microelectronic devices due to their high mobilities and few-atom thickness. In this work, we report ASALD of MoS2 thin films by deposition with MoF6 and H2S precursor reactants. The inherent selectivity of the MoS2 atomic layer deposition (ALD) process is demonstrated by growth …


Understanding The Role Thin Film Interfaces Play In Solar Cell Performance And Stability, Mirra M. Rasmussen, Laura S. Bruckman, Ina T. Martin Apr 2023

Understanding The Role Thin Film Interfaces Play In Solar Cell Performance And Stability, Mirra M. Rasmussen, Laura S. Bruckman, Ina T. Martin

Student Scholarship

As more efficient and cost-effective photovoltaic (PV) architectures are developed, solar becomes an ever more competitive and viable replacement for fossil fuels. Full grid electrification necessitates the development of efficient, reliable, cost-effective technologies - and there is room for many different kinds of PV in this expanding market. The practical challenges and constraints of terawatt PV production have brought scalability and durability into sharp scientific focus. From a materials perspective, there are commonalities in the materials questions and challenges across different PV technologies. Whereas most PV technology is referred to by the absorber layer - e.g. silicon, or perovskite solar …


Perovskite Film Formation For Solar Cell Absorbers: Effects Of Substrate Modification, Mirra M. Rasmussen, Kyle M. Crowley, Ina T. Martin Oct 2021

Perovskite Film Formation For Solar Cell Absorbers: Effects Of Substrate Modification, Mirra M. Rasmussen, Kyle M. Crowley, Ina T. Martin

Student Scholarship

As perovskite solar cell efficiencies have risen rapidly, practical constraints have made durability a critical concern. Whereas much attention has been paid to the development of the perovskite absorber layer, the charge transport layers can also be engineered to better the performance and stability of the device. This work uses the molecular modifier bromopropyltrimethoxysilane (BPTMS) to alter the interface between indium tin oxide (ITO, a common thin film solar cell transparent electrode) and methylammonium lead iodide (MAPbI3, a common perovskite absorber) to improve the morphology and stability of the perovskite absorber film. The substrate, molecular modifier, and perovskite film were …


Decoupling The Effects Of Interfacial Chemistry And Grain Size In Perovskite Stability, Mirra M. Rasmussen, Kyle M. Crowley, Miranda S. Gottlieb, Geneviève Sauvé, Ina T. Martin Jul 2021

Decoupling The Effects Of Interfacial Chemistry And Grain Size In Perovskite Stability, Mirra M. Rasmussen, Kyle M. Crowley, Miranda S. Gottlieb, Geneviève Sauvé, Ina T. Martin

Student Scholarship

No abstract provided.


Atomic Layer Deposition Of Sodium Fluoride Thin Films, Sara Kuraitis, Donghyeon Kang, Anil U. Mane, Hua Zhou, Jake Soares, Jeffrey W. Elam, Elton Graugnard May 2021

Atomic Layer Deposition Of Sodium Fluoride Thin Films, Sara Kuraitis, Donghyeon Kang, Anil U. Mane, Hua Zhou, Jake Soares, Jeffrey W. Elam, Elton Graugnard

Materials Science and Engineering Faculty Publications and Presentations

The need for advanced energy conversion and storage devices remains a critical challenge amid the growing worldwide demand for renewable energy. Metal fluoride thin films are of great interest for applications in lithium-ion and emerging rechargeable battery technologies, particularly for enhancing the stability of the electrode-electrolyte interface and thereby extending battery cyclability and lifetime. Reported within, sodium fluoride (NaF) thin films were synthesized via atomic layer deposition (ALD). NaF growth experiments were carried out at reactor temperatures between 175 and 250 °C using sodium tert-butoxide and HF-pyridine solution. The optimal deposition temperature range was 175–200 °C, and the resulting …


Theoretical Analysis Of Experimental Data Of Sodium Diffusion In Oxidized Molybdenum Thin Films, Orlando Ayala, Benjamin Belfore, Tasnuva Ashrafee, John Akwari, Grace Rajan, Shankar Karki, Deewakar Poudel, Sylvain Marsillac Jan 2021

Theoretical Analysis Of Experimental Data Of Sodium Diffusion In Oxidized Molybdenum Thin Films, Orlando Ayala, Benjamin Belfore, Tasnuva Ashrafee, John Akwari, Grace Rajan, Shankar Karki, Deewakar Poudel, Sylvain Marsillac

Engineering Technology Faculty Publications

In this work, the diffusion process of sodium (Na) in molybdenum (Mo) thin films while it was deposited on soda lime glass (SLG) was studied. A small amount of oxygen was present in the chamber while the direct-current (DC) magnetron sputtering was used for the deposition. The substrate temperatures were varied to observe its effect. Such molybdenum films, with or without oxidations, are often used in thin film solar cells, either as back contact or as hole transport layers. Secondary ion mass spectrometry (SIMS) was used to quantify the concentration of the species. A grain diffusion mechanistic model incorporating the …


Charge Transport, Conductivity And Seebeck Coefficient In Pristine And Tcnq Loaded Preferentially Grown Metal Organic Frameworks, Xin Chen, Kai Zhang, Zeinab Mohammed Hassan, Engelbert Redel, Helmut Baumgart Jan 2021

Charge Transport, Conductivity And Seebeck Coefficient In Pristine And Tcnq Loaded Preferentially Grown Metal Organic Frameworks, Xin Chen, Kai Zhang, Zeinab Mohammed Hassan, Engelbert Redel, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

This investigation on Metal-Organic Framework (MOF) HUKUST-1 films focuses on comparing the undoped pristine state and with the case of doping by TCNQ infiltration of the MOF pore structure. We have determined the temperature dependent charge transport and p-type conductivity for HKUST-1 films. Furthermore, the electrical conductivity and the current-voltage characteristics have been characterized in detail. Because the most common forms of MOFs, bulk MOF powders, do not lend themselves easily to electrical characterization investigations, here in this study the electrical measurements were performed on dense, compact surface-anchored metal-organic framework (SURMOF) films. These monolithic, well-defined, and (001) preferentially oriented MOF …


Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey Jun 2020

Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey

Publications and Research

La(Fe,Si)13–based compounds are considered to be very promising magnetocaloric materials for magnetic refrigeration applications. Many studies have focused on this material family but only in bulk form. In this paper we report on the fabrication of thick films of La(Fe,Si)13, both with and without post-hydriding. These films exhibit magnetic and structural properties comparable to bulk materials. We also observe that the ferromagnetic phase transition has a negative thermal hysteresis, a phenomenon not previously found in this material but which may have its origins in the availability of a strain energy reservoir, as in the cases of …


Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey Oct 2019

Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey

Faculty Publications

Titanium nitride is widely used in plasmonic applications, due to its robustness and optical properties which resemble those of gold. Despite this interest, the nonlinear properties have only recently begun to be investigated. In this work, beam deflection and non-degenerate femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse saturable absorption whose relaxation is dominated …


Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Jun 2018

Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Fluorescence photons emitted by single molecules contain rich information regarding their rotational motions, but adapting single-molecule localization microscopy (SMLM) to measure their orientations and rotational mobilities with high precision remains a challenge. Inspired by dipole radiation patterns, we design and implement a Tri-spot point spread function (PSF) that simultaneously measures the three-dimensional orientation and the rotational mobility of dipole-like emitters across a large field of view. We show that the orientation measurements done using the Tri-spot PSF are sufficiently accurate to correct the anisotropy-based localization bias, from 30 nm to 7 nm, in SMLM. We further characterize the emission anisotropy …


Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac May 2018

Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

In view of the large-scale utilization of Cu(In,Ga)Se2 (CIGS) solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE) has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which …


Synthesis, Processing, And Fundamental Phase Formation Study Of Czts Films For Solar Cell Applications, Osama Awadallah Apr 2018

Synthesis, Processing, And Fundamental Phase Formation Study Of Czts Films For Solar Cell Applications, Osama Awadallah

FIU Electronic Theses and Dissertations

Copper zinc tin sulfide (Cu2ZnSnS4 or CZTS) kesterite compound has attracted much attention in the last years as a new abundant, low cost, and environmentally benign material with desirable optoelectronic properties for Photovoltaic (PV) thin film solar cell applications. Among various synthesis routes for CZTS thin films, sol-gel processing is one of the most attractive routes to obtain CZTS films with superior quality and low cost.

In this study, sol-gel sulfurization process parameters for CZTS thin films were systematically investigated to identify the proper process window. In addition, temperature dependent Raman spectroscopy was employed to monitor the …


Magneto-Ionic Control Of Interfacial Magnetism, Geoffrey Beach Nov 2015

Magneto-Ionic Control Of Interfacial Magnetism, Geoffrey Beach

Composites at Lake Louise (CALL 2015)

Voltage control of magnetism has the potential to substantially reduce power consumption in spintronic memory and logic devices, while offering new functionalities through field-effect operation [1-4]. Magneto-electric coupling has most often been achieved using complex oxides such as ferroelectrics, piezoelectrics, or multiferroic materials. Here I describe a new approach to voltage control of magnetism based on solid-state electrochemical switching of the interfacial oxidation state [2-4] in thin metallic ferromagnets. In ultrathin ferromagnet/oxide bilayers, strong perpendicular magnetic anisotropy (PMA) often arises from arises from interfacial hybridization between the ferromagnetic metal and oxygen ions. By using a solid-state ionic conductor with high …


Crystallization Engineering As A Route To Epitaxial Strain Control, Andrew R. Akbashev, Aleksandr V. Plokhikh, Dmitri Barbash, Samuel Lofland, Jonathan E. Spanier Oct 2015

Crystallization Engineering As A Route To Epitaxial Strain Control, Andrew R. Akbashev, Aleksandr V. Plokhikh, Dmitri Barbash, Samuel Lofland, Jonathan E. Spanier

Faculty Scholarship for the College of Science & Mathematics

The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain engineering. Thin films of amorphous Bi–Fe–O were grown on (001)SrTiO3 and (001)LaAlO3substrates via atomic layer deposition. In situ X-ray diffraction and X-ray photoelectron spectroscopy studies of the crystallization of the amorphous films into the epitaxial (001)BiFeO3 phase reveal distinct evolution profiles of crystallinity with temperature. While growth on (001)SrTiO3 results in a coherently strained film, the same films obtained on (001)LaAlO3 …


Mechanical And Optical Properties Of Silicon Nitride Thin Films On Glass, Lukas Simurka, Selen Erkam, Tuncay Turutoglu Oct 2015

Mechanical And Optical Properties Of Silicon Nitride Thin Films On Glass, Lukas Simurka, Selen Erkam, Tuncay Turutoglu

Nanomechanical Testing in Materials Research and Development V

Optical thin films have been widely used in glass coating industry for various energy saving applications such as solar control and low emissivity glasses. However, handling and processing of these systems can lead into various mechanical defects decreasing its lifetime and optical performance. Therefore, understanding and control of the mechanical properties plays an important role in thin films production. Silicon nitride is one of the most commonly used materials in the optical systems. Its high refractive index and good mechanical properties provide different functionalities. It can be used as a buffer layer for tuning of the optical performance or as …


Combining In Situ Tensile Testing And Orientation Microscopy In The Sem: A Mems Based Setup For Studying Time Dependent Deformation Of Thin Films By Tkd And Stem, Jan Philipp Liebig, Benoit Merle, Mathias Goken Oct 2015

Combining In Situ Tensile Testing And Orientation Microscopy In The Sem: A Mems Based Setup For Studying Time Dependent Deformation Of Thin Films By Tkd And Stem, Jan Philipp Liebig, Benoit Merle, Mathias Goken

Nanomechanical Testing in Materials Research and Development V

Structures in integrated devices are constantly subjected to residual or thermal stresses during operation. Understanding the relaxation behavior of thin films is therefore critical for improving their reliability.

Recently it was shown that Transmission Kikuchi Diffraction (TKD) in the Scanning Electron Microscope (SEM) enables the determination of local crystal orientations with high spatial resolution using standard Electron Backscatter Diffraction (EBSD) instrumentation [1, 2]. Giving access to quantitative information on mechanisms like grain growth, grain rotation and strain gradient evolution, time resolved TKD stands out as a promising technique for the characterization of microstructural changes upon relaxation of thin films.

We …


Improved Terahertz Modulation Using Germanium Telluride (Gete) Chalcogenide Thin Films, Alexander H. Gwin, Christopher H. Kodama, Tod V. Laurvick, Ronald Coutu Jr., Philip F. Taday Jul 2015

Improved Terahertz Modulation Using Germanium Telluride (Gete) Chalcogenide Thin Films, Alexander H. Gwin, Christopher H. Kodama, Tod V. Laurvick, Ronald Coutu Jr., Philip F. Taday

Faculty Publications

We demonstrate improved terahertz (THz) modulation using thermally crystallized germanium telluride (GeTe) thin films. GeTe is a chalcogenide material that exhibits a nonvolatile, amorphous to crystalline phase change at approximately 200 °C, as well as six orders of magnitude decreased electrical resistivity. In this study, amorphous GeTe thin films were sputtered on sapphire substrates and then tested using THz time-domain spectroscopy (THz-TDS). The test samples, heated in-situ while collecting THz-TDS measurements, exhibited a gradual absorbance increase, an abrupt nonvolatile reduction at the transition temperature, followed by another gradual increase in absorbance. The transition temperature was verified by conducting similar thermal …


Impact Of Symmetry On The Ferroelectric Properties Of Catio₃ Thin Films, Michael D. Biegalski, Liang Qiao, Yijia Gu, Apurva Mehta, Qian He, For Full List Of Authors, See Publisher's Website. Apr 2015

Impact Of Symmetry On The Ferroelectric Properties Of Catio₃ Thin Films, Michael D. Biegalski, Liang Qiao, Yijia Gu, Apurva Mehta, Qian He, For Full List Of Authors, See Publisher's Website.

Materials Science and Engineering Faculty Research & Creative Works

Epitaxial strain is a powerful tool to induce functional properties such as ferroelectricity in thin films of materials that do not possess ferroelectricity in bulk form. In this work, a ferroelectric state was stabilized in thin films of the incipient ferroelectric, CaTiO3, through the careful control of the biaxial strain state and TiO6 octahedral rotations. Detailed structural characterization was carried out by synchrotron x-ray diffraction and scanning transmission electron microscopy. CaTiO3 films grown on La0.18Sr0.82Al0.59Ta0.41O3 (LSAT) and NdGaO3 (NGO) substrates experienced a 1.1% biaxial strain state …


Continual Cell Deformation Induced Via Attachment To Oriented Fibers Enhances Fibroblast Cell Migration, Sisi Qin, Vincent Ricotta, Marcia Simon, Richard A. F. Clark, Miriam Rafailovich Mar 2015

Continual Cell Deformation Induced Via Attachment To Oriented Fibers Enhances Fibroblast Cell Migration, Sisi Qin, Vincent Ricotta, Marcia Simon, Richard A. F. Clark, Miriam Rafailovich

Department of Biomedical Engineering Faculty Publications

Fibroblast migration is critical to the wound healing process. In vivo, migration occurs on fibrillar substrates, and previous observations have shown that a significant time lag exists before the onset of granulation tissue. We therefore conducted a series of experiments to understand the impact of both fibrillar morphology and migration time. Substrate topography was first shown to have a profound influence. Fibroblasts preferentially attach to fibrillar surfaces, and orient their cytoplasm for maximal contact with the fiber edge. In the case of en-mass cell migration out of an agarose droplet, fibroblasts on flat surfaces emerged with an enhanced velocity, v …


The Ph Sensing Properties Of Rf Sputtered Ruo2 Thin-Film Prepared Using Different Ar/O2 Flow Ratio, Ali Sardarinejad, Devendra Kumar Maurya, Kamal Alameh Jan 2015

The Ph Sensing Properties Of Rf Sputtered Ruo2 Thin-Film Prepared Using Different Ar/O2 Flow Ratio, Ali Sardarinejad, Devendra Kumar Maurya, Kamal Alameh

Research outputs 2014 to 2021

The influence of the Ar/O2 gas ratio during radio frequency (RF) sputtering of the RuO2 sensing electrode on the pH sensing performance is investigated. The developed pH sensor consists in an RF sputtered ruthenium oxide thin-film sensing electrode, in conjunction with an electroplated Ag/AgCl reference electrode. The performance and characterization of the developed pH sensors in terms of sensitivity, response time, stability, reversibility, and hysteresis are investigated. Experimental results show that the pH sensor exhibits super-Nernstian slopes in the range of 64.33-73.83 mV/pH for Ar/O2 gas ratio between 10/0-7/3. In particular, the best pH sensing performance, in …


Nanomaterials Synthesis By A Novel Phenomenon: The Nanoscale Rayleigh-Taylor Instability, S. Yadavali, Ramki Kalyanaraman Apr 2014

Nanomaterials Synthesis By A Novel Phenomenon: The Nanoscale Rayleigh-Taylor Instability, S. Yadavali, Ramki Kalyanaraman

Faculty Publications and Other Works -- Materials Science & Engineering

The Rayleigh-Taylor (RT) interfacial instability has been attributed to physical phenomenon in a wide variety of macroscopic systems, including black holes, laser generated plasmas, and thick fluids. However, evidence for its existence in the nanoscale is lacking. Here we first show theoretically that this instability can occur in films with thickness negligible compared to the capillary length when they are heated rapidly inside a bulk fluid. Pressure gradients developed in the evaporated fluid region produce large forces causing the instability. Experiments were performed by melting Au films inside glycerol fluid by nanosecond laser pulses. The ensuingnanoparticles had highly monomodal size …


Polarization Of Bi2te3 Thin Film In A Floating-Gate Capacitor Structure, Hui Yuan, Kai Zhang, Haitao Li, Hao Zhu, John E. Bonevich, Helmut Baumgart, Curt A. Richter, Qiliang Li Jan 2014

Polarization Of Bi2te3 Thin Film In A Floating-Gate Capacitor Structure, Hui Yuan, Kai Zhang, Haitao Li, Hao Zhu, John E. Bonevich, Helmut Baumgart, Curt A. Richter, Qiliang Li

Electrical & Computer Engineering Faculty Publications

Metal-Oxide-Semiconductor (MOS) capacitors with Bi2Te3 thin film sandwiched and embedded inside the oxide layer have been fabricated and studied. The capacitors exhibit ferroelectric-like hysteresis which is a result of the robust, reversible polarization of the Bi2Te3 thin film while the gate voltage sweeps. The temperature-dependent capacitance measurement indicates that the activation energy is about 0.33 eV for separating the electron and hole pairs in the bulk of Bi2Te3, and driving them to either the top or bottom surface of the thin film. Because of the fast polarization speed, potentially excellent …


Physical Analysis Of Vo2 Films Grown By Atomic Layer Deposition And Rf Magnetron Sputtering, Madhavi Tangirala, Kai Zhang, David Nminibapiel, Venkateswara Pallem, Christian Dussarrat, Wei Cao, Thomas N. Adam, Corbet S. Johnson, Hani E. Elsayed-Ali, Helmut Baumgart Jan 2014

Physical Analysis Of Vo2 Films Grown By Atomic Layer Deposition And Rf Magnetron Sputtering, Madhavi Tangirala, Kai Zhang, David Nminibapiel, Venkateswara Pallem, Christian Dussarrat, Wei Cao, Thomas N. Adam, Corbet S. Johnson, Hani E. Elsayed-Ali, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

Among the many vanadium suboxides and different stoichiometries, VO2 has received considerable attention due to its remarkable metal-insulator transition (MIT) behavior, which causes a significant reversible change in its electrical and optical properties occurring across the phase transition at 67°C. The initially amorphous VO2 thin films were fabricated by the emerging, Atomic Layer Deposition (ALD) technique with (tetrakis[ethylmethylamino]vanadium) {V(NEtMe)4} as precursor and H2O vapor as oxidation agent. For benchmarking we have also used the RF Magnetron Sputtering technique to deposit metallic vanadium thin films, which were later oxidized during furnace annealing. Post annealing of …


In Situ Study Of The Role Of Substrate Temperature During Atomic Layer Deposition Of Hfo2 On Inp, H. Dong, Santosh Kc, X. Qin, B. Brennan, S. Mcdonnell, D. Zhernokletov, C. Hinkle, J. Kim, K. Cho, R. Wallace Oct 2013

In Situ Study Of The Role Of Substrate Temperature During Atomic Layer Deposition Of Hfo2 On Inp, H. Dong, Santosh Kc, X. Qin, B. Brennan, S. Mcdonnell, D. Zhernokletov, C. Hinkle, J. Kim, K. Cho, R. Wallace

Faculty Publications

The dependence of the “self cleaning” effect of the substrate oxides on substrate temperature during atomic layer deposition (ALD) of HfO2 on various chemically treated and native oxide InP (100) substrates is investigated using in situ X-ray photoelectron spectroscopy. The removal of In-oxide is found to be more efficient at higher ALD temperatures. The P oxidation states on native oxide and acid etched samples are seen to change, with the total P-oxide concentration remaining constant, after 10 cycles of ALD HfO2 at different temperatures. An (NH4)2 S treatment is seen to effectively remove native oxides and passivate the InP surfaces …


Indium Diffusion Through High-K Dielectrics In High-K/Inp Stacks, H. Dong, W. Cabrera, R. Galatage, Santosh Kc, B. Brennan, X. Qin, S. Mcdonnell, D. Zhernokletov, C. Hinkle, K. Cho, Y. Chabal, R. Wallace Aug 2013

Indium Diffusion Through High-K Dielectrics In High-K/Inp Stacks, H. Dong, W. Cabrera, R. Galatage, Santosh Kc, B. Brennan, X. Qin, S. Mcdonnell, D. Zhernokletov, C. Hinkle, K. Cho, Y. Chabal, R. Wallace

Faculty Publications

Evidence of indium diffusion through high-k dielectric (Al2O3 and HfO2) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a POx rich interface.High mobility III-V channel materials are contenders to replace Si in semiconductor devices like metal oxide semiconductor filed effect transistors (MOSFETs) for the sub 22 nm technology node.1 Extensive research is being carried out to determine the validity of these III-V materials for use as the channel, in a variety of …


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Jan 2013

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Faculty Publications

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Growth Analysis Of (Ag,Cu)Inse2 Thin Films Via Real Time Spectroscopic Ellipsometry, S. A. Little, V. Ranjan, R. W. Collins, S. Marsillac Jan 2012

Growth Analysis Of (Ag,Cu)Inse2 Thin Films Via Real Time Spectroscopic Ellipsometry, S. A. Little, V. Ranjan, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

In situ and ex situ characterization methods have been applied to investigate the properties of (Ag,Cu)InSe2 (ACIS) thin films. Data acquired from real time spectroscopic ellipsometry (RTSE) experiments were analyzed to extract the evolution of the nucleating, bulk, and surface roughness layer thicknesses. The evolution of these layer thicknesses suggests a transition from Volmer-Weber to Stranski-Krastanov type behavior when Cu is replaced by Ag. The complex dielectric functions of ACIS at both deposition and room temperature as a function of film composition were also extracted from the RTSE data, enabling parameterization of the alloy optical properties.


Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Nov 2011

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Faculty Publications

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …


Rf And Structural Characterization Of Srf Thin Films, A.M. Valente-Feliciano, H.L. Phillips, C.E. Reece, J. Spradlin, X. Zhao, D. Gu, H. Baumgart, D. Beringer, R.A. Lukaszew, B. Xiao, K. Seo Jan 2010

Rf And Structural Characterization Of Srf Thin Films, A.M. Valente-Feliciano, H.L. Phillips, C.E. Reece, J. Spradlin, X. Zhao, D. Gu, H. Baumgart, D. Beringer, R.A. Lukaszew, B. Xiao, K. Seo

Electrical & Computer Engineering Faculty Publications

In the past years, energetic vacuum deposition methods have been developed in different laboratories to improve Nb/Cu technology for superconducting cavities. JLab is pursuing energetic condensation deposition via Electron Cyclotron Resonance. As part of this study, the influence of the deposition energy on the material and RF properties of the Nb thin film is investigated. The film surface and structure analyses are conducted with various techniques like X-ray diffraction, Transmission Electron Microscopy, Auger Electron Spectroscopy and RHEED. The microwave properties of the films are characterized on 50 mm disk samples with a 7.5 GHz surface impedance characterization system. This paper …