Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering

In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer Nov 2015

In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer

USF Tampa Graduate Theses and Dissertations

Improvement of novel electronic devices is possible by tailor-designing the electronic structure at device interfaces. Common problems observed at interfaces are related to unwanted band alignment caused by the chemical diversity of interface partners, influencing device performance negatively. One way to address this problem is by introducing ultra-thin interfacial dipole layers, steering the band alignment in a desired direction. The requirements are strict in terms of thickness, conformity and low density of defects, making sophisticated deposition techniques necessary. Atomic layer deposition (ALD) with its Ångstrom-precise thickness control can fulfill those requirements.

The work presented here encompasses the implementation of an …


Investigation Of Low Thermal Conductivity Materials With Potential For Thermoelectric Applications, Kaya Wei Nov 2015

Investigation Of Low Thermal Conductivity Materials With Potential For Thermoelectric Applications, Kaya Wei

USF Tampa Graduate Theses and Dissertations

Thermoelectric devices make it possible for direct energy conversion between heat and electricity. In order to achieve a high energy conversion efficiency, materials with a high thermoelectric figure of merit (ZT = S2σT/κ, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature, and κ is the thermal conductivity) are in great demand. The standard approach is to optimize charge carrier transport while at the same time scatter the heat transport, a task that is easier said than done. Improving the electrical properties in order to increase ZT is limited since electrons …


Near-Field Microwave Microscopy For Surface And Subsurface Characterization Of Materials, Maria Fernanda Cordoba Erazo Nov 2015

Near-Field Microwave Microscopy For Surface And Subsurface Characterization Of Materials, Maria Fernanda Cordoba Erazo

USF Tampa Graduate Theses and Dissertations

This dissertation presents an investigation on the capabilities of Near-Field Microwave Microscopy (NFMM) for the characterization of surface and subsurface materials. Subsurface characterization refers to the detection, differentiation and imaging of dielectric, and metallic features that are coated with an insulating layer. The design, simulation and modeling, and testing of a dielectric resonator (DR)-based NFMM and a coaxial transmission line resonator-based NFMM are discussed in detail in this work. Additionally, materials differentiation and imaging capabilities of each microscope are examined using several bulk samples, liquids, GaAs MMIC circuits, and gold/glass testing patterns.

The 5.7 GHz DR-based NFMM uses a microwave …


Synthesis, Characterization And Ferroelectric Properties Of Ln-Type Znsno3 Nanostructures, Corisa Kons Nov 2015

Synthesis, Characterization And Ferroelectric Properties Of Ln-Type Znsno3 Nanostructures, Corisa Kons

USF Tampa Graduate Theses and Dissertations

With increasing focus on the ill health and environmental effects of lead there is a greater push to develop Pb-free devices and materials. To this extent, ecofriendly and earth abundant LiNbO3-type ZnSnO3, a derivative of the ABO3 perovskite structure, has a high theoretically predicted polarization making it an excellent choice as a suitable alternative to lead based material such as PZT. In this work we present a novel synthesis procedure for the growth of various ZnSnO3 nanostructures by combined physical/chemical processes. Various ZnSnO3 nanostructures of different dimensions were grown from a ZnO:Al template …


Evaluating Corrosion Resistance Of Reinforcing Steel In A Novel Green Concrete, Andrea Carolina Ramirez Nov 2015

Evaluating Corrosion Resistance Of Reinforcing Steel In A Novel Green Concrete, Andrea Carolina Ramirez

USF Tampa Graduate Theses and Dissertations

Reinforced concrete structures are expected to have a long service life with minimal maintenance. Corrosion of reinforcing steel is a major factor in reducing concrete structure lifespan, as corrosion products occupy a larger volume than that of the consumed steel and generate tensile stresses that crack the concrete cover. Procedures to control corrosion in traditional concrete, which is made with Portland-cement (PC), have been well established. However, in recent years novel concrete materials based on alternatives to normally cured PC have been developed in response to global needs to reduce greenhouse gases emissions. In particular, a promising new cement has …


Tailoring The Pore Environment Of Metal-Organic And Molecular Materials Decorated With Inorganic Anions: Platforms For Highly Selective Carbon Capture, Patrick Stephen Nugent Oct 2015

Tailoring The Pore Environment Of Metal-Organic And Molecular Materials Decorated With Inorganic Anions: Platforms For Highly Selective Carbon Capture, Patrick Stephen Nugent

USF Tampa Graduate Theses and Dissertations

Due to their high surface areas and structural tunability, porous metal-organic materials, MOMs, have attracted wide research interest in areas such as carbon capture, as the judicious choice of molecular building block (MBB) and linker facilitates the design of MOMs with myriad topologies and allows for a systematic variation of the pore environment. Families of MOMs with modular components, i.e. MOM platforms, are eminently suitable for targeting the selective adsorption of guest molecules such as CO2 because their pore size and pore functionality can each be tailored independently. MOMs with saturated metal centers (SMCs) that promote strong yet reversible …


Measuring Polydimethylsiloxane (Pdms) Mechanical Properties Using Flat Punch Nanoindentation Focusing On Obtaining Full Contact, Federico De Paoli Oct 2015

Measuring Polydimethylsiloxane (Pdms) Mechanical Properties Using Flat Punch Nanoindentation Focusing On Obtaining Full Contact, Federico De Paoli

USF Tampa Graduate Theses and Dissertations

In this research, the materials used were the Polydimethylsiloxane (PDMS) polymers. PDMS mechanicals properties were measured using a customized version of the nanoindentation test using a flat punch tip. The method is proposed in Chapter 3 and it is used to calculate the elastic modulus of different PDMS samples. The samples tested were both produced specifically for this research and available in the laboratory’s storage. They all present different levels of cross-linking degree.

It is quite common to not have full contact between the cylindrical flat punch and the sample because of the unavoidable tilt. The new method guarantees establishing …


Bio-Photoelectrochemical Solar Cells Incorporating Reaction Center And Reaction Center Plus Light Harvesting Complexes, Houman Yaghoubi Sep 2015

Bio-Photoelectrochemical Solar Cells Incorporating Reaction Center And Reaction Center Plus Light Harvesting Complexes, Houman Yaghoubi

USF Tampa Graduate Theses and Dissertations

Harvesting solar energy can potentially be a promising solution to the energy crisis now and in the future. However, material and processing costs continue to be the most important limitations for the commercial devices. A key solution to these problems might lie within the development of bio-hybrid solar cells that seeks to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. The bio-photoelectrochemical cell technologies exploit biomimetic means of energy conversion by utilizing plant-derived photosystems which can be inexpensive and ultimately the most sustainable alternative. Plants and photosynthetic …


Ductility And Use Of Titanium Alloy And Stainless Steel Aerospace Fasteners, Jarrod Talbott Whittaker Sep 2015

Ductility And Use Of Titanium Alloy And Stainless Steel Aerospace Fasteners, Jarrod Talbott Whittaker

USF Tampa Graduate Theses and Dissertations

The main purpose of this thesis is to investigate the ductility and application of titanium alloys, like titanium 6Al-4V, when used in aerospace fasteners compared to more conventional stainless steel aerospace fasteners such as A286. There have been concerns raised about the safe usability of titanium 6-4 in the aerospace industry due to its lack of strain hardening. However, there is a lack of data pertaining to this concern of safe usage which this thesis aims to address. Tensile tests were conducted to find the ductility indexes of these fasteners which quantify the amount of plastic to elastic elongation. From …


An Investigation On The Band Gap And Band Edge Of Semi-Conducting Lanthanum Transition Metal Perovskites For Photocatalytic Applications, Divya Suresh Sep 2015

An Investigation On The Band Gap And Band Edge Of Semi-Conducting Lanthanum Transition Metal Perovskites For Photocatalytic Applications, Divya Suresh

USF Tampa Graduate Theses and Dissertations

For the past few decades, a frenzy of attention has been given towards the development of an assortment of photocatalysts as a solution for various environmental problems. TiO2 is the most widely used photocatalyst. TiO2 is biocompatible, chemically and thermally stable but TiO2 and a vast majority other photocatalysts have large band gaps, and hence they find applicability only in the UV region of the solar spectrum. These large band gap photocatalysts suffer a severe limitation with regard to their overall process efficiency as the UV region contributes to about 3 to 4 % of the solar spectrum in terms …


Mechanical Properties Of Laser-Sintered-Nylon Diamond Lattices, Clayton Neff Jul 2015

Mechanical Properties Of Laser-Sintered-Nylon Diamond Lattices, Clayton Neff

USF Tampa Graduate Theses and Dissertations

Additive manufacturing offers a manufacturing technique to produce complex geometry prototypes at a rapid pace and low cost. These advantages advocate additive manufacturing for the design and production of cellular structures. Cellular structures are interesting because they contain a large amount of porosity (void space of air) to manifest a lightweight structure. Designs of cellular structures generate a periodic pattern; often of complex geometry, called a lattice.

There has been a significant amount of research to maximize specific stiffness of lattice structures but little to evaluate low-stiffness lattices. Low-stiffness structures benefit energy absorbance through bending of the lattice. This research …


Assessing Viscoelastic Properties Of Polydimethylsiloxane (Pdms) Using Loading And Unloading Of The Macroscopic Compression Test, Mustafa Fincan Apr 2015

Assessing Viscoelastic Properties Of Polydimethylsiloxane (Pdms) Using Loading And Unloading Of The Macroscopic Compression Test, Mustafa Fincan

USF Tampa Graduate Theses and Dissertations

Polydimethylsiloxane (PDMS) mechanical properties were measured using custom-built compression test device. PDMS elastic modulus can be varied with the elastomer base to the curing agent ratio, i.e. by changing the cross-linking density. PDMS samples with different crosslink density in terms of their elastic modulus were measured. In this project the PDMS samples with the base/curing agent ratio ranging from 5:1 to 20:1 were tested. The elastic modulus varied with the amount of the crosslinker, and ranged from 0.8 MPa to 4.44 MPa. The compression device was modified by adding digital displacement gauges to measure the lateral strain of the sample, …


Adhesion Of Germanium Electrode On Nickel Substrate For Lithium Ion Battery Applications, Aadithya Jeyaranjan Mar 2015

Adhesion Of Germanium Electrode On Nickel Substrate For Lithium Ion Battery Applications, Aadithya Jeyaranjan

USF Tampa Graduate Theses and Dissertations

Lithium ion batteries (LIBs) have gained increasing popularity due to their high potential, low self-discharge, zero priming and minimal memory effect. However, the emergence of electrical vehicles and hybrid electrical vehicles in the automobile industry, where LIBs are predominantly in use, instilled a need to improve LIB batteries by experimenting with new materials. Graphite, the commonly used anode material for LIBs suffers from low theoretical capacity (372 mA h g-1) and torpid rate performance. Germanium (Ge) seems to be a promising substitute of carbon due to its high theoretical capacity, high Li+ diffusivity and electrical conductivity. However, Ge undergoes large …


Synthesis, Characterization, And Electrochemical Properties Of Polyaniline Thin Films, Soukaina Rami Mar 2015

Synthesis, Characterization, And Electrochemical Properties Of Polyaniline Thin Films, Soukaina Rami

USF Tampa Graduate Theses and Dissertations

Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of …


Design, Fabrication And Characterization Of Mim Diodes And Frequency Selective Thermal Emitters For Solar Energy Harvesting And Detection Devices, Saumya Sharma Jan 2015

Design, Fabrication And Characterization Of Mim Diodes And Frequency Selective Thermal Emitters For Solar Energy Harvesting And Detection Devices, Saumya Sharma

USF Tampa Graduate Theses and Dissertations

Energy harvesting using rectennas for infrared radiation continues to be a challenge due to the lack of fast switching diodes capable of rectification at THz frequencies. Metal insulator metal diodes which may be used at 30 THz must show adequate nonlinearity for small signal rectification such as 30 mV. In a rectenna assembly, the voltage signal received as an output from a single nanoantenna can be as small as ~30µV. Thus, only a hybrid array of nanoantennas can be sufficient to provide a signal in the ~30mV range for the diode to be able to rectify around 30THz. A metal-insulator-metal …


Self-Assembly Kinetics Of Microscale Components: A Parametric Evaluation, Jose Miguel Carballo Jan 2015

Self-Assembly Kinetics Of Microscale Components: A Parametric Evaluation, Jose Miguel Carballo

USF Tampa Graduate Theses and Dissertations

The goal of the present work is to develop, and evaluate a parametric model of a basic microscale Self-Assembly (SA) interaction that provides scaling predictions of process rates as a function of key process variables. At the microscale, assembly by “grasp and release” is generally challenging. Recent research efforts have proposed adapting nanoscale self-assembly (SA) processes to the microscale. SA offers the potential for reduced equipment cost and increased throughput by harnessing attractive forces (most commonly, capillary) to spontaneously assemble components. However, there are challenges for implementing microscale SA as a commercial process. The existing lack of design tools prevents …


Synthesis And Fabrication Of Graphene/Conducting Polymer/Metal Oxide Nanocomposite Materials For Supercapacitor Applications, Mohamad Khawaja Jan 2015

Synthesis And Fabrication Of Graphene/Conducting Polymer/Metal Oxide Nanocomposite Materials For Supercapacitor Applications, Mohamad Khawaja

USF Tampa Graduate Theses and Dissertations

The rising energy consumption worldwide is leading to significant increases in energy production with fossil fuels being the major energy source. The negative environmental impact of fossil fuel use and its finite nature requires the use of alternative sources of energy. Solar energy is a clean alternative energy source; however, its intermittent nature is a major impediment that needs to be reduced or eliminated by the development of cost effective energy storage. Thermal storage in tanks filled typically with molten salt at elevated temperatures is widely used in concentrating solar power plants to generate electricity during periods of low daytime …


Understanding The Role Of Colloidal Particles In Electroporation Mediated Delivery, Alisha Peterson Jan 2015

Understanding The Role Of Colloidal Particles In Electroporation Mediated Delivery, Alisha Peterson

USF Tampa Graduate Theses and Dissertations

Electroporation (EP) is a physical non-viral technique used to deliver therapeutic molecules across the cell membrane. During electroporation an external electric field is applied across a cell membrane and it causes pores to form. These pores then allow the surrounding media containing the therapeutics to diffuse across the membrane. This technique has been specifically studied as a promising gene and drug delivery system. Colloidal particles have also proven to be promising for a variety of biological applications including molecular delivery, imaging, and tumor ablation, due to their large surface area and tunable properties. In more recent years researchers have explored …


Systems Approach To Producing Electrospun Polyvinylidene Difluoride Fiber Webs With Controlled Fiber Structure And Functionality, Brian D. Bell Jan 2015

Systems Approach To Producing Electrospun Polyvinylidene Difluoride Fiber Webs With Controlled Fiber Structure And Functionality, Brian D. Bell

USF Tampa Graduate Theses and Dissertations

Polyvinylidene difluoride (PVDF) is a functional polymeric material that can be used for a wide variety of applications. There are many new future applications that were recently suggested for electrospun PVDF fibers. Electrospinning is a process capable of producing nano to micro sized PVDF fibers in a web. It is important to control the structure of the web during electrospinning because by controlling the structure of the web it is possible for the PVDF fiber web to have increased performance in comparison to other common forms of PVDF.

While past scientific literature focused on applications of PVDF fibers, little was …