Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Open Access Theses

Applied sciences

Publication Year

Articles 1 - 30 of 31

Full-Text Articles in Engineering

Size Scaling Of Strength And Toughness For 3d Printed Polymer Specimens, Darren Thomas Bell Dec 2016

Size Scaling Of Strength And Toughness For 3d Printed Polymer Specimens, Darren Thomas Bell

Open Access Theses

To find material systems that offer low density and high strength, stiffness or toughness, hierarchically designed material systems have provided a promising research area. This thesis lays the groundwork for designing efficient micro-architectured material systems by characterizing size effects for 3d printed polymer parts. Two methods were used to analyze data from 3-point bend tests for specimens of varying size: the load-separation method was used for finding the point of crack growth initiation and Bazant’s method was used to find shape independent strength at failure. The strength values were used as inputs for finding size independent material constants within a …


Design Of Nitroxide-Based Radical Polymer Materials For Electronic Applications, Martha E. Hay Dec 2016

Design Of Nitroxide-Based Radical Polymer Materials For Electronic Applications, Martha E. Hay

Open Access Theses

Radical polymers represent a new class of organic electronic materials that rely on an oxidation-reduction (redox) reaction to transport charge. That is, stable radical sites pendant to the polymer backbone communicate electronically through a rapid oxidation-reduction reaction. This redox mechanism has previously been established as effective for charge-storage applications (e.g., secondary batteries). When applied in the solid state, radical polymers demonstrate electrical conductivity on par with that of first-generation conjugated polymer electronic materials. This initial success has prompted interest in developing design rules for radical polymers. Specifically, this thesis explores the impact of radical density in a polymer …


Degradation Of High Performance Polymeric Fibers: Effects Of Sonication, Humidity And Temperature On Poly (P-Phenylene Terephthalamide) Fibers, Nelyan Lopez-Perez Dec 2016

Degradation Of High Performance Polymeric Fibers: Effects Of Sonication, Humidity And Temperature On Poly (P-Phenylene Terephthalamide) Fibers, Nelyan Lopez-Perez

Open Access Theses

High performance fibers are characterized by properties such as high strength and resistance to chemicals and heat. Due to their outstanding properties, they are used on applications under harsh environments that can degrade and decrease their performance. Fiber degradation due to different chemical and mechanical factors, is a process that begins at a microstructural level. Changes in the polymer’s chemical or physical structure can alter their mechanical properties. Knowledge of the structure-properties relationship and the effects of environmental chemical and physical factors over time, is crucial for the improvement and development of high performance fibers.

In this study ballistic fibers …


Linking Nanoscale Mechanical Behavior To Bulk Physical Properties And Phenomena Of Energetic Materials, Matthew R. Taw Dec 2016

Linking Nanoscale Mechanical Behavior To Bulk Physical Properties And Phenomena Of Energetic Materials, Matthew R. Taw

Open Access Theses

The hardness and reduced modulus of aspirin, RDX, HMX, TATB, FOX-7, ADAAF, and TNT/CL-20 were experimentally measured with nanoindentation. These values are reported for the first time using as-received micron sized crystals of energetic materials with no additional mechanical processing. The results for TATB, ADAAF, and TNT/CL-20 are the first of their kind, while comparisons to previous nanoindentation studies on large, carefully grown single crystals of the other energetic materials show that mechanical properties of the larger crystals are comparable to crystals in the condition they are practically used. Measurements on aspirin demonstrate the variation that can occur between nanoindentation …


The Influence Of Alkalinity Of Portland Cement On The Absorption Characteristics Of Superabsorbent Polymers (Sap) For Use In Internally Cured Concrete, Juan D. Tabares Tamayo Dec 2016

The Influence Of Alkalinity Of Portland Cement On The Absorption Characteristics Of Superabsorbent Polymers (Sap) For Use In Internally Cured Concrete, Juan D. Tabares Tamayo

Open Access Theses

The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking.

This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions …


Mechanism Of Shot Peening Enhancement For The Fatigue Performance Of Aa7050-T7451, Daniel James Chadwick Dec 2016

Mechanism Of Shot Peening Enhancement For The Fatigue Performance Of Aa7050-T7451, Daniel James Chadwick

Open Access Theses

Shot peening is a dynamic cold working process involving the impingement of peening media onto a substrate surface. Shot peening is commonly employed as a surface treatment technique within the aerospace industry during manufacturing, in order to improve fatigue performance of structural components. The compressive residual stress induced during shot peening is understood to result in fatigue crack growth retardation, improving the performance of shot peened components. However, shot peening is a compromise between the benefit of inducing a compressive residual stress and causing detrimental surface damage. Due to the relatively soft nature of AA7050-T7451, shot peening can result in …


Passive Thermal Management Using Phase Change Materials, Yash Yogesh Ganatra Dec 2016

Passive Thermal Management Using Phase Change Materials, Yash Yogesh Ganatra

Open Access Theses

The trend of enhanced functionality and reducing thickness of mobile devices has led to a rapid increase in power density and a potential thermal bottleneck since thermal limits of components remain unchanged. Active cooling mechanisms are not feasible due to size, weight and cost constraints. This work explores the feasibility of a passive cooling system based on Phase Change Materials (PCMs) for thermal management of mobile devices. PCMs stabilize temperatures due to the latent heat of phase change thus increasing the operating time of the device before threshold temperatures are exceeded. The primary contribution of this work is the identification …


Additive Manufacturing Of Carbon Fiber-Reinforced Thermoplastic Composites, Nicholas M. Denardo Aug 2016

Additive Manufacturing Of Carbon Fiber-Reinforced Thermoplastic Composites, Nicholas M. Denardo

Open Access Theses

Additive manufacturing, or 3D printing, encompasses manufacturing processes that construct a geometry by depositing or solidifying material only where it is needed in the absence of a mold. The ability to manufacture complex geometries on demand directly from a digital file, as well as the decreasing equipment costs due to increased competition in the market, have resulted in the AM industry experiencing rapid growth in the past decade. Many companies have emerged with novel technologies well suited to improve products and/or save costs in various industries.

Until recently, the applications of polymer additive manufacturing have been mainly limited to prototyping. …


Solution Based Processing Of Garnet Type Oxides For Optimized Lithium-Ion Transport, Derek K. W. Schwanz Aug 2016

Solution Based Processing Of Garnet Type Oxides For Optimized Lithium-Ion Transport, Derek K. W. Schwanz

Open Access Theses

Current lithium based portable electrochemical storage devices are limited by the inherent instability and volatility of conventional electrolytes materials. Ceramic materials show much promise for use in advanced lithium based battery systems due to their inhibition of dendritic growth and high thermal and chemical stability. The main drawback of solid materials is their low ionic conductivity, relying on lattice hopping to transport ions between electrodes during cycling. Garnet type oxides, specifically of the base compositions Li7La3Zr2O12 and Li5L a3Bi2O12 have been synthesized through Pechini method solution based processing by the dissolution of reagent salts into nitric acid and creation of …


Development Of A Novel Polymer-Garnet Solid State Composite Electrolyte Incorporating Li-La-Zr-Bi-O And Polyethylene Oxide, Muhammed Ramazan Oduncu Aug 2016

Development Of A Novel Polymer-Garnet Solid State Composite Electrolyte Incorporating Li-La-Zr-Bi-O And Polyethylene Oxide, Muhammed Ramazan Oduncu

Open Access Theses

Current lithium ion batteries are comprised of organic liquid electrolytes - a mixture of lithium salts and binary solvents such as ethylene carbonate (EC) and dimethyl carbonate (DMC). The main drawbacks of this liquid mixture related to safety are flammability of the organic solvents and chemical instability with the electrode materials. To date, various ceramic and polymer materials have been considered which overcome safety issues. However, a common problem of these solid state materials is that they are not able to provide high ionic conductivity at ambient temperatures. Garnet-type cubic Li7La 3Zr2O12 ceramic material has attracted much interest because of …


Polymerizable Lipids For Controlled Functionalization Of Layered Materials, Kortney Kaye Rupp Aug 2016

Polymerizable Lipids For Controlled Functionalization Of Layered Materials, Kortney Kaye Rupp

Open Access Theses

Self-assembled monolayers (SAM’s) offer a straightforward approach to tailoring the interfacial properties of metals, metal oxides and semiconductors. Noncovalent functionalization of single-layer graphene offers the possibility to finely tune surface chemistry for future applications in electronics. Polymerization of photochemically reactive molecules in a lying-down phase has been used to increase the strength of intermolecular interactions between long alkanes and HOPG substrates. Long-chain fatty acid derivatives with internal diyne groups yield a conjugated ene-yne polymer upon UV irradiation. Diyne lipids with phosphocholine (diyne PC) and phosphoethanolamine (diyne PE) groups offer a charged form of the head group that is robust towards …


Nanoscale Phonon Thermal Conductivity Via Molecular Dynamics, Jonathan M. Dunn Apr 2016

Nanoscale Phonon Thermal Conductivity Via Molecular Dynamics, Jonathan M. Dunn

Open Access Theses

Molecular dynamics (MD) simulations provide a useful and simple means of calculating the nanoscale thermal properties of materials, which requires special analysis since the thermal properties of materials change when their dimensions reach the nanoscale. In this research, MD is used to investigate the nanoscale phonon thermal transport of materials that are attracting much interest in the areas of materials science and nuclear physics. In order to evaluate two distinct methods of calculating the thermal conductivity of materials using MD, the simulation methods are first applied to Si. Once an understanding of each simulation method is established, they are then …


Assessing The Performance Of A Soy Methyl Ester -Polystyrene Topical Treatment To Extend The Service Life Of Concrete Structures, D'Shawn G. Thomas Apr 2016

Assessing The Performance Of A Soy Methyl Ester -Polystyrene Topical Treatment To Extend The Service Life Of Concrete Structures, D'Shawn G. Thomas

Open Access Theses

Experimental results show that soy methyl ester (SME), a derivative of soy bean oil, along with the incorporation of polystyrene (PS) is a non-toxic, biodegradable and renewable material that can be used effectively as a topical concrete surface treatment. While, concrete sealants and topical surface treatments can be used to extend to durability of concrete structures, it is difficult to predict the durability of concrete structures sealed with a sealant or topical surface treatment. This is due to a lack of necessary model inputs that can be used to address the durability of concrete structures treated with these materials. In …


Effect Of Humidity On The Creep Response Of Cellulose Nanocrystals Films, Marianne C. Valone Apr 2016

Effect Of Humidity On The Creep Response Of Cellulose Nanocrystals Films, Marianne C. Valone

Open Access Theses

Cellulose nanocrystals (CNCs) are a derivative of cellulose, the Earth’s most abundant source of a sustainable polymer. There are many applications for CNCs such as batteries, antimicrobial films, flexible displays and drug delivery. This research is focused on CNCs films and the mechanical properties once humidity was introduced.

The creation of self-aligned CNCs films was utilized to perform dynamic mechanical analysis (DMA) testing. The Forest Products Lab (FPL) in Madison, Wisconsin provided the CNCs used. Both 3.5 wt.% and 9.1 wt.% films were made and tested. A DMA method was created to test the creep response of the CNCs films …


Digital Image Correlation Of Heterogeneous Deformations In Polycrystalline Material With Electron Backscatter Diffraction, Javier Esquivel Oct 2014

Digital Image Correlation Of Heterogeneous Deformations In Polycrystalline Material With Electron Backscatter Diffraction, Javier Esquivel

Open Access Theses

This work establishes the ability to conduct digital image correlation (DIC) investigations at varying length scales. DIC allows for a computational method of strain field measurements using multiple images to track random speckle patterns on material surfaces. The use of a powder silicon oxide speckle allows for high optical magnification correlation using conventional load frames. Self-assembling gold nanoparticles provide sub-micron resolution speckle patterns to study microstructure influences on deformation using scanning electron microscopy. The complex microstructure in aerospace grade aluminum and nickel-based superalloys, give rise to varied deformation fields, which can be studied using electron backscatter diffraction. Specimen preparation techniques, …


High-Purity Gallium Analysis By Inductively Coupled Plasma Mass Spectrometry, Kyungjean Min Oct 2014

High-Purity Gallium Analysis By Inductively Coupled Plasma Mass Spectrometry, Kyungjean Min

Open Access Theses

The mobility of Two-dimensional Electron Gas in AlGaAs/GaAs heterostructures that are grown in the Molecular Beam Epitaxy (MBE) can be increased by purification of the gallium used to grow the films. To attain 200 million cm2/Vs mobility, the impurity concentration of gallium should be reduced to below 1 ppb. The commercial 7N (99.99999%) gallium with 100 ppb total impurity is currently used in the MBE at Purdue University and is being purified by zone refining. To evaluate the commercial 7N gallium and establish the methodology for the impurity measurement after zone refining, germanium, iron, and zinc in 6N and 7N …


Using A Centrifuge For Quality Control Of Pre-Wetted Lightweight Aggregate In Internally Cured Concrete, Albert E. Miller Oct 2014

Using A Centrifuge For Quality Control Of Pre-Wetted Lightweight Aggregate In Internally Cured Concrete, Albert E. Miller

Open Access Theses

Early age shrinkage of cementitious systems can result in an increased potential for cracking which can lead to a reduction in service life. Early age shrinkage cracking can be particularly problematic for high strength concretes, which are often specified due to their high strength and low permeability. However, these high strength concretes frequently exhibit a reduction in the internal relative humidity (RH) due to the hydration reaction (chemical shrinkage) and self-desiccation which results in a bulk shrinkage, termed autogenous shrinkage, which is substantial at early ages. Due to the low permeability of these concretes, standard external curing is not always …


Investigation Of Microstructural Alterations In M50 And 52100 Steel Using Nanoindentation, Kristin R. Paulson Oct 2014

Investigation Of Microstructural Alterations In M50 And 52100 Steel Using Nanoindentation, Kristin R. Paulson

Open Access Theses

Bearing steels are used in rolling elements and are designed to withstand heavy loads for an extended period of time. At the end of life, microstructural alterations within the material have been observed and are linked to failure. In this study, a three ball-on-rod fatigue tester was used to test M50 and 52100 steel cylindrical rods at differing loads of 4.0 GPa, 4.5 GPa, and 5.0 GPa and in lubricated and unlubricated conditions to 10 8 cycles in an attempt to produce microstructural alterations. Microstructural alterations characterized as butterflies were observed and investigated further in two M50 samples that were …


Measurement Of The Responses Of Polyurethane And Confortm Foams And The Development Of A System Identification Technique To Estimate Polyurethane Foam Parameters From Experimental Impulse Responses, Vaidyanadan Sundaram Oct 2014

Measurement Of The Responses Of Polyurethane And Confortm Foams And The Development Of A System Identification Technique To Estimate Polyurethane Foam Parameters From Experimental Impulse Responses, Vaidyanadan Sundaram

Open Access Theses

Flexible polyurethane foam is the main cushioning element used in car seats. Optimization of an occupied seat's static and dynamic behavior requires models of foam that are accurate over a wide range of excitation and pre-compression conditions. Experiments were conducted to measure the response of foam over a wide range of excitation which include slowly varying uniaxial compression tests on a 3 inch cube foam sample, base excitation and impulse excitation test on a foam-mass system. The foam used was the same in all of the experiments, thus obtaining all the responses on the same foam sample which helps eliminate …


Dissolution Rate And Mechanism Of Metals In Molten Aluminum Alloy A380, Hengyu Zhu Oct 2014

Dissolution Rate And Mechanism Of Metals In Molten Aluminum Alloy A380, Hengyu Zhu

Open Access Theses

Shot sleeve is a very easily worn out part in a high-pressure die-casting machine due to serious dissolution of the area underneath the pouring hole. It is because during a normal pouring process, the high temperature molten aluminum will impact and dissolve that area of the shot sleeve by complex chemical and physical process. Rotation experiment was carried out to H13 and four kinds of refractory metal samples. SEM and EDS pictures were taken in order to investigate the microstructure and the dissolution mechanism of these materials. This suggests a high strength niobium is an ideal material for that area …


Mode I Fatigue Delamination Onset Of Carbon Fibre Reinforced Polymer With Novel Post-Cure Throughthickness Reinforcement, Christopher John Kourloufas Oct 2014

Mode I Fatigue Delamination Onset Of Carbon Fibre Reinforced Polymer With Novel Post-Cure Throughthickness Reinforcement, Christopher John Kourloufas

Open Access Theses

A novel trough thickness reinforcement (TTR) technique, proposed by Kravchenko et al., has been tested under mode I fatigue loading conditions in order to investigate characterisation of the onset of delamination growth in unidirectional 8552/IM7. The experimental results, following standard test method ASTM D6115-13, indicate that the mode I fatigue delamination onset behaviour can be altered by the inclusion of TTR both ahead and behind the crack tip. Tests have been conducted at a wide range of maximum displacement values, corresponding to percentages of the critical fracture toughness value determined for the maternal, GIC . The results were found …


Correlating Grain Size To Radiation Damage Tolerance Of Tungsten Materials Exposed To Relevant Fusion Conditions, Sean Robert Gonderman Jul 2014

Correlating Grain Size To Radiation Damage Tolerance Of Tungsten Materials Exposed To Relevant Fusion Conditions, Sean Robert Gonderman

Open Access Theses

Tungsten remains a leading candidate for plasma facing component (PFC) in future fusion devices. This is in large part due to its strong thermal and mechanical properties. The ITER project has already chosen to use an all tungsten divertor. Despite having a high melting temperature and low erosion rate, tungsten faces a large variety of issues when subject to fusion like conditions. These include embrittlement, melting, and extreme morphology change (growth of fuzz nanostructure). The work presented here investigates mechanisms that drive surface morphology change in tungsten materials exposed to fusion relevant plasmas. Specifically, tungsten materials of different grain sizes …


Processing And Characterization Of Zr-Based Metallic Glass By Laser Direct Depositon, Heehun Bae Apr 2014

Processing And Characterization Of Zr-Based Metallic Glass By Laser Direct Depositon, Heehun Bae

Open Access Theses

Bulk Metallic Glass has become famous for its exceptional mechanical and corrosion properties. Especially, Zirconium has been the prominent constituent in Bulk Metallic Glass due to its superior glass forming ability, the ability to form amorphous phase with low cooling rate, thereby giving advantages in structural applications.

In this study, Zirconium powder was alloyed with Aluminum, Nickel and Copper powder at an atomic ratio of 65:10:10:15, respectively. Using the ball milling process to mix the powders, Zr65 Al10 Ni 10 Cu15 amorphous structure was manufactured by laser direct deposition.

Laser power and laser scanning speed were optimized to increase the …


Shear Rheological Characterization Of Gel Healing Response And Construction Of Rheo-Piv System, Abhishek Deepak Bawiskar Apr 2014

Shear Rheological Characterization Of Gel Healing Response And Construction Of Rheo-Piv System, Abhishek Deepak Bawiskar

Open Access Theses

Thermo-reversible gels are solvent-filled 3D networks of polymer chains interconnected by physical (transient) crosslinks. On applying a high shear stress, the crosslinks are broken and these gels show a typical stress-strain behavior due to cohesive fracture of the gel. When heated above a critical temperature and cooled back to room temperature, all the crosslinks are re-formed. Interestingly, partial to full recovery of broken crosslinks is also observed by simply letting the gel stand at room temperature. In this study, the fracture and healing behavior of a model acrylic triblock copolymer gel has been characterized by shear rheometry. A mathematical model …


Detailed Finite Element Analysis And Preliminary Study Of The Effects Of Friction And Fastener Pre-Tension On The Mechanical Behavior Of Fastened Built-Up Members, Francisco Javier Bonachera Martin Apr 2014

Detailed Finite Element Analysis And Preliminary Study Of The Effects Of Friction And Fastener Pre-Tension On The Mechanical Behavior Of Fastened Built-Up Members, Francisco Javier Bonachera Martin

Open Access Theses

The characterization of fatigue resistance is one of the main concerns in structural engineering, a concern that is particularly important in the evaluation of existing bridge members designed or erected before the development of fatigue design provisions. The ability of a structural member to develop alternate load paths after the failure of a component is known as member-level or internal redundancy. In fastened built-up members, these alternate load paths are affected by the combination of fastener pre-tension and friction between the structural member components in contact. In this study, a finite element methodology to model and analyze riveted and bolted …


Blast Energy Mitigation In Porous Rocks, Brittany Corinne Essink Apr 2014

Blast Energy Mitigation In Porous Rocks, Brittany Corinne Essink

Open Access Theses

Geo-materials are commonly used and sought after for blast mitigation applications due to their wide availability and low cost compared to industry trademarked materials. Characterization of these natural geo-materials such as volcanic rocks is of paramount importance in determining their blast mitigation capabilities. While there is a large amount of information available for materials such as concrete or sand blasts, information on the properties of volcanic rocks is far more scarce. This lack of data is due to the wide range of existing natural volcanic rocks and the variation in the minerals and pore structures of the rocks.

In this …


Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar Apr 2014

Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar

Open Access Theses

Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques.

Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the …


Effect Of Multivalent Ions On The Swelling And Mechanical Behavior Of Superabsorbent Polymers (Saps) For Mitigation Of Mortar Autogenous Shrinkage, Qian Zhu Apr 2014

Effect Of Multivalent Ions On The Swelling And Mechanical Behavior Of Superabsorbent Polymers (Saps) For Mitigation Of Mortar Autogenous Shrinkage, Qian Zhu

Open Access Theses

The chemical and physical structure-property relationships of model superabsorbent polymer (SAP) hydrogels were characterized with respect to swelling behavior and mechanical properties in different ionic solutions (Na+ , Ca2+ , and Al3+ ). The model hydrogels were composed of poly(sodium acrylate-acrylamide) (PANa-PAM) copolymer with varying concentrations of PANa (0, 17, 33, 67, and 83 wt.%) and covalent crosslinking densities of 1, 1.5, and 2 wt.%. By synthesizing the hydrogels in-house, systems with independently tunable amounts of covalent crosslinking and anionic functional groups were created, allowing for the relative effects of covalent and ionic crosslinking on the properties of the hydrogels …


Microstructural Indicators Of Transition Mechanisms In Time-Dependent Fatigue Crack Growth In Nickel Base Superalloys, Ann Elizabeth Heeter Apr 2014

Microstructural Indicators Of Transition Mechanisms In Time-Dependent Fatigue Crack Growth In Nickel Base Superalloys, Ann Elizabeth Heeter

Open Access Theses

Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible …


High Speed Turning Of Compacted Graphite Iron (Cgi) Using Controlled Modulation, Tyler Paul Stalbaum Jan 2013

High Speed Turning Of Compacted Graphite Iron (Cgi) Using Controlled Modulation, Tyler Paul Stalbaum

Open Access Theses

Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry.

In industry, machining of CGI is done only at low speeds, less than V = …