Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

A Study On Interactions Between Metal-Organic Frameworks And Biological Materials, Josh Phipps Dec 2022

A Study On Interactions Between Metal-Organic Frameworks And Biological Materials, Josh Phipps

Graduate Theses and Dissertations

Metal-organic frameworks or MOFs are an extremely useful tool in many areas of applications. Their popularity in recent years has arisen from their high efficiency in catalytic chemical reactions. This is made possible due to their porous interior and the ability of the MOFs components to be functionalized. These same traits make MOFs excellent for use in protein encapsulation or immobilization and have the potential to become excellent drug carriers. Their development in this utilization has been limited dramatically compared to MOFs chemical applications. This is due in part to the nature of biological processes taking longer to study, but …


Hierarchical Structure And Material Integration For Electrocatalytic Co2 Reduction, Hamed Mehrabi Dec 2022

Hierarchical Structure And Material Integration For Electrocatalytic Co2 Reduction, Hamed Mehrabi

Graduate Theses and Dissertations

CO2 released by the combustion of fossil fuels is driving significant changes to the earth’sclimate. The natural cycle for removing CO2 from the atmosphere, namely photosynthesis, cannot keep up with the rate at which it is being added. Developing engineering approaches to remove CO2 from the atmosphere is becoming essential to reduce these effects. Removal leads to further issues of carbon sequestration and favorable CO2 reuse strategies, including the electrochemical transformation of recovered CO2 to useful products such as fuels and materials. Copper is an important electrocatalyst for the CO2 reduction reaction (CO2RR) because of its unique capability for producing …


Initial Exploration Of Reduced Gyrations For Arkansas Asphalt Mix Designs, Jocie L. Baker Aug 2022

Initial Exploration Of Reduced Gyrations For Arkansas Asphalt Mix Designs, Jocie L. Baker

Graduate Theses and Dissertations

The most common distresses in asphalt pavement are cracking and rutting. These distresses plague almost every asphalt roadway in the world. Finding ways to mitigate these distresses will improve the performance of asphalt pavements. One way to combat the premature cracking of asphalt in the field is to ensure there is enough asphalt binder within the mix. This will help the flexibility of the asphalt undergoing large loads and deformation. However, it is widely accepted that mix designs across the country lack the appropriate amount of asphalt binder in their mixes, causing dry mix designs that are subject to cracking …


Xps And Ipe Determination Of Band Offsets Of Germanium Based Materials, Justin Michael Rudie Aug 2022

Xps And Ipe Determination Of Band Offsets Of Germanium Based Materials, Justin Michael Rudie

Graduate Theses and Dissertations

Germanium tin and silicon germanium tin are group IV semiconductor alloys that have gained significant interest in recent years for their potential use in optoelectrical devices. While silicon and germanium are indirect bandgap materials on their own, alloying them with tin in sufficient quantities leads to a transition to direct bandgap alloys. Direct gap performance opens the door for efficient light emitting and detecting devices fabricated entirely on group IV materials that are compatible with the industry standard CMOS manufacturing techniques. Germanium tin and silicon germanium tin have bandgaps that respond to light in the mid to near infrared spectrum …


Fabrication And Non-Covalent Functionalization And Characterization Of Graphene-Based Devices On Novel Substrate Cadmium Trithiophosphate (Iv) — Cdps, Abayomi Omotola Omolewu Aug 2022

Fabrication And Non-Covalent Functionalization And Characterization Of Graphene-Based Devices On Novel Substrate Cadmium Trithiophosphate (Iv) — Cdps, Abayomi Omotola Omolewu

Graduate Theses and Dissertations

With graphene at the center of several application areas such as sensing, circuits, high-frequency devices for communication systems, etc., it is crucial to understand how the intrinsic properties of devices made from graphene and other materials like platinum and palladium nanoparticles affect the performance of such devices for the specific application area. Many graphene-based devices for different application areas have focused mainly on the material composition of the graphene-based devices and how it affects performance parameters for the specific application. However, it would be insightful to understand how the intrinsic electrical properties of the graphene devices for different applications affect …


Etching Process Development For Sic Cmos, Weston Reed Renfrow Aug 2022

Etching Process Development For Sic Cmos, Weston Reed Renfrow

Graduate Theses and Dissertations

Silicon Carbide (SiC) is an exciting material that is growing in popularity for having qualities that make it a helpful semiconductor in extreme environments where silicon devices fail. The development of a SiC CMOS is in its infancy. There are many improvements that need to be made to develop this technology further. Photolithography is the most significant bottleneck in the etching process; it was studied and improved upon. Etching SiC can be a challenge with its reinforced crystal structure. Chlorine-based inductively coupled plasma (ICP) etching of intrinsic SiC and doped SiC, SiO2, and Silicon has been studied. A baseline chlorine …


Hierarchically Structured Photoelectrodes Via Atomic Layer Deposition, Justin Rowan Reed Demoulpied Aug 2022

Hierarchically Structured Photoelectrodes Via Atomic Layer Deposition, Justin Rowan Reed Demoulpied

Graduate Theses and Dissertations

In the search for a sustainable method to meet increasing energy needs, solar energy emerges as an underutilized, plentiful resource. Solar intermittency and requirements for transportation necessitate storing solar energy in the form of chemical bonds via artificial photosynthesis. Photoelectrochemical (PEC) water splitting generates hydrogen fuel from solar energy and water. A semiconducting material that successfully meets the complex requirements for building an industrially scalable PEC device has yet to emerge. This is leading to a reevaluation of materials previously overlooked within PEC research, mainly materials with limitations such as minimal charge carrier mobility and propensity to corrosion under illumination …


Study Of Thin Gan/Ingan/Gan Double Graded Structures For Future Photovoltaic Application, Mirsaeid Sarollahi Aug 2022

Study Of Thin Gan/Ingan/Gan Double Graded Structures For Future Photovoltaic Application, Mirsaeid Sarollahi

Graduate Theses and Dissertations

Indium gallium nitride (In_x Ga_(1-x) N) materials have displayed great potential for photovoltaic and optoelectronic devices due to their optical and electrical properties. Properties such as direct bandgap, strong bandgap absorption, thermal stability and high radiation resistance qualify them as great materials for photovoltaic devices. The tunable bandgap which absorbs the whole solar spectrum is the most significant feature which became attractive for scientists. The bandgap for these materials varies from 0.7 eV for InN to 3.4 eV for GaN covering from infrared to ultraviolet. In_x Ga_(1-x) N wurtzite crystal is grown on GaN buffer layer by Molecular Beam Epitaxy …


Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke Aug 2022

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke

Graduate Theses and Dissertations

A novel controlled phase gate for photonic quantum computing is proposed by exploiting the powerful nonlinear optical responses of atomically thin transition metal dichalcogenides (TMDs) and it is shown that such a gate could elicit a π-rad phase shift in the outgoing electric field only in the case of two incident photons and no other cases. Firstly, the motivation for such a gate is developed and then the implementation of monolayer TMDs is presented as a solution to previous realization challenges. The single-mode case of incident photons upon a TMD is derived and is then used to constrain the more …


Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda May 2022

Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda

Graduate Theses and Dissertations

Since it was first isolated and characterized in 2004, graphene has shown the potential for a technological revolution. This is due to its amazing physical properties such as high electrical conductivity, high thermal conductivity, and extreme flexibility. Freestanding graphene membranes naturally possesses an intrinsic rippled structure, and these ripples are in constant random motion even room temperatures. Occasionally, the ripples undergo spontaneous buckling (change of curvature from concave to convex and vice versa) and the potential energy associated with this is a double well potential. This movement of graphene is a potential source of vibrational energy.

In this dissertation, we …