Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Influence Of Concrete Compressive Strength On Transfer And Development Lengths Of Prestressed Concrete, Alberto Teodoro Ramirez-Garcia Dec 2016

Influence Of Concrete Compressive Strength On Transfer And Development Lengths Of Prestressed Concrete, Alberto Teodoro Ramirez-Garcia

Graduate Theses and Dissertations

This research examines the relationship between concrete compressive strength and strand bond. The goal of this research was to develop an equation that relates strand bond to concrete compressive strength at strand release (approximately 1 day of age) and at 28 days of age, and those equations are presented in this investigation. Strand bond is assessed by measuring the transfer length and development length for prestressed beams cast in the laboratory. In the U.S., strand bond is predicted using transfer length and development length equations provided by the American Concrete Institute (ACI-318) Building Code and American Association of State and …


The Effect Of Process Parameters And Surface Condition On Bond Strength Between Additively Manufactured Components And Polymer Substrates, Bharat Bhushan Chivukula Dec 2016

The Effect Of Process Parameters And Surface Condition On Bond Strength Between Additively Manufactured Components And Polymer Substrates, Bharat Bhushan Chivukula

Graduate Theses and Dissertations

Additive patching is a process in which printers with multiple axes deposit molten material onto a pre-defined surface to form a bond. Studying the effect of surface roughness and process parameters selected for printing auxiliary part on the bond helps in improving the strength of the final component. Particularly, the influence of surface roughness, as established by adhesion theory, has not been evaluated in the framework of additive manufacturing (AM). A full factorial design of experiments with five replications was conducted on two levels and three factors, viz., layer thickness, surface roughness, and raster angle to examine the underlying effects …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris Dec 2016

Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris

Graduate Theses and Dissertations

Lead selenide and lead selenide/lead sulfide core/shell nanocrystals were investigated for use in near infrared photodetectors. A colloidal synthesis method was used for both the core and core/shell configurations. The lead sulfide shell was examined in order to mitigate oxidation of the nanoparticle surface. Absorbance and photoluminescence spectra were measured at room temperature and 77 K, respectively. Transmission electron microscopy images were also obtained to confirm crystallography and size. Bulk lead selenide was simulated in WIEN2k utilizing the linear-augmented plane wave method of solving density functional theory to better understand the electronic structure of PbSe. The crystal structure, electron density, …


Role Of The Inner Shell Architecture On The Various Blinking States And Decay Dynamics Of Core-Shell And Core-Multishell Quantum Dots, Pooja Bajwa Dec 2016

Role Of The Inner Shell Architecture On The Various Blinking States And Decay Dynamics Of Core-Shell And Core-Multishell Quantum Dots, Pooja Bajwa

Graduate Theses and Dissertations

Colloidal semiconductor nanocrystals (quantum dots, QDs) have received much attention in recent years due to their uniquely size-tunable properties leading to a number of promising applications. Some of their most popular applications include their use as fluorescent probes in biology, as electro-optical components and in photovoltaic devices. CdSe-based QDs are particularly important because of their ease of synthesis, high photoluminescence quantum yields (PL QYs) across the whole visible spectrum and their photostabilty. Shelling of core QDs is usually carried out to improve their optical properties, minimize outer environmental effects on their properties, and avoid toxic element exposure to the environment. …


Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill Dec 2016

Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill

Graduate Theses and Dissertations

Colloidal lead selenide and lead selenide / lead sulfide core/shell nanocrystals were grown using a wet chemical synthesis procedure. Absorbance and photoluminescence measurements were made to verify the quality of the produced nanocrystals. Absorbance spectra were measured at room temperature, while photoluminescence spectra were measured at 77 K. Organic ligands were exchanged for shorter ligands in order to increase the conductivity of the nanocrystals. Absorption and PL spectra for both core and core/shell nanocrystals were compared. Interdigital photodetector devices with varying channel widths were fabricated by depositing gold onto a glass substrate. Lead selenide nanocrystals were deposited onto these metallic …


Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman Dec 2016

Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman

Graduate Theses and Dissertations

Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO …


Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu Aug 2016

Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu

Graduate Theses and Dissertations

A low-temperature photoluminescence (PL) study was conducted on low-temperature metal modulation epitaxy (MME) grown GaN. By comparing the PL signal from high temperature grown GaN buffer layers, and MME grown cap layers on top of the buffer layers, it was found that MME grown GaN cap has a significantly greater defect-related emission. The band edge PL from MME grown GaN found to be 3.51eV at low temperature. The binding energy of the exciton in GaN is determined to be 21meV through temperature dependence analysis. A PL peak at 3.29eV was found in the luminescence of the MME grown cap layer, …


Phase-Field Models For Simulating Physical Vapor Deposition And Microstructure Evolution Of Thin Films, James Stewart Jr. May 2016

Phase-Field Models For Simulating Physical Vapor Deposition And Microstructure Evolution Of Thin Films, James Stewart Jr.

Graduate Theses and Dissertations

The focus of this research is to develop, implement, and utilize phase-field models to study microstructure evolution in thin films during physical vapor deposition (PVD). There are four main goals to this dissertation. First, a phase-field model is developed to simulate PVD of a single-phase polycrystalline material by coupling previous modeling efforts on deposition of single-phase materials and grain evolution in polycrystalline materials. Second, a phase-field model is developed to simulate PVD of a polymorphic material by coupling previous modeling efforts on PVD of a single-phase material, evolution in multiphase materials, and phase nucleation. Third, a novel free energy functional …


Investigation Of Optical Properties Of Zinc Oxide Photodetector, Tyler Chism May 2016

Investigation Of Optical Properties Of Zinc Oxide Photodetector, Tyler Chism

Graduate Theses and Dissertations

UV photodetection devices have many important applications for uses in biological detection, gas sensing, weaponry detection, fire detection, chemical analysis, and many others. Today’s photodetectors often utilize semiconductors such as GaAs to achieve high responsivity and sensitivity. Zinc oxide, unlike many other semiconductors, is cheap, abundant, non-toxic, and easy to grow different morphologies at the micro and nano scale. With the proliferation of these devices also comes the impending need to further study optics and photonics in relation to phononics and plasmonics, and the general principles underlying the interaction of photons with solid state matter and, specifically, semiconductors. For this …