Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 45

Full-Text Articles in Engineering

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li Oct 2019

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li

Doctoral Dissertations

The advent of miniature electronic devices demands power sources of commensurate form factors. This spurs the research of micro energy storage devices, e.g., 3D microbatteries. A 3D microbattery contains nonplanar microelectrodes with high aspect ratio and high surface area, separated by a nanoscale electrolyte. The device takes up a total volume as small as 10 mm3, allowing it to serve on a chip and to provide power in-situ. The marriage of nanotechnology and electrochemical energy storage makes microbattery research a fascinating field with both scientific excitement and application prospect. However, successful fabrication of well-functioned key components …


Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier Oct 2019

Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier

Doctoral Dissertations

Bioinspired nanoarchitectures are of great interest for applications in fields such as nanomedicine, tissue engineering, and biosensing. With this interest, understanding how the physical properties of these complex nanostructures relate to their function is increasingly important. This dissertation describes the creation of complex nanoarchitectures with controlled structure and the investigation of the effect of nanocarrier physical properties on cell uptake for applications in nanomedicine. DNA self-assembly by supramolecular polymerization was chosen to create complex nanostructures of controlled architectures. We demonstrated that the supramolecular polymerization of DNA known as hybridization chain reaction (HCR) is in fact a living polymerization. The living …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Amorphous-Crystalline Brush Block Copolymers: Phase Behavior, Rheology And Composite Design, Gayathri Kopanati Oct 2019

Amorphous-Crystalline Brush Block Copolymers: Phase Behavior, Rheology And Composite Design, Gayathri Kopanati

Doctoral Dissertations

Bottlebrush block copolymers are polymers with chemically distinct polymer side chains grafted onto a common backbone. The unique architecture induced properties make these materials attractive for applications such as photonic materials, stimuli responsive actuators and drug delivery vehicles to name a few. This dissertation primarily investigates the phase transitions and rheological behavior of amorphous-crystalline bottlebrush brush block copolymers and their composites. The temperature induced phase behavior is investigated using time resolved synchrotron X-ray source. Irrespective of volume fraction and backbone length, the samples display strong segregation even at high temperatures (200 °C) and there is no accessible order-disorder transition in …


Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim Oct 2019

Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim

Doctoral Dissertations

Recent advances in the field of biomedical and life-sciences are increasingly demanding more life-like actuation with higher degrees of freedom in motion at small scales. Many researchers have developed various solutions to satisfy these emerging requirements. In many cases, new solutions are made possible with the development of novel polymeric actuators. Advances in polymeric actuation not only addressed problems concerning low degree of freedom in motion, large system size, and bio-incompatibility associated with conventional actuators, but also led to the discovery of novel applications, which were previously unattainable with conventional engineered systems. This dissertation focuses on developing novel actuation mechanisms …


Self-Exfoliating And Reactive Polymer (Serp) As A Protection Against Chemical Warfare Agents (Cwas), Soeun Kim Oct 2019

Self-Exfoliating And Reactive Polymer (Serp) As A Protection Against Chemical Warfare Agents (Cwas), Soeun Kim

Doctoral Dissertations

According to the US army report, there are still significant numbers of stockpiles of chemical warfare agents (CWAs) produced during the Second World War. CWAs production and stockpiling were officially outlawed by the Chemical Weapons Convention of 1993. Nevertheless, some fanatics around the world use CWA as a weapon of mass destruction, such as the Sarin gas attack in Syria in 2013. Since the discovery that toxic pentavalent organophosphorus (OP) compounds has facilitated the development of CWAs as well as insecticides, research on developing protective materials against those toxins have become a priority. Simply, those poisonous molecules are referred to …


Designing Ion-Containing Polymers With Controlled Structure And Dynamics, Joshua Enokida Oct 2019

Designing Ion-Containing Polymers With Controlled Structure And Dynamics, Joshua Enokida

Doctoral Dissertations

Ion-containing polymers are a unique class of materials for which strong electrostatic interactions dictate physical properties. By altering molecular parameters, such as the backbone chemical structure, the ion content, and the ion-pair identity, the structure and dynamics of these polymers can be altered. Further investigation of the molecular parameters that govern their structure-property relationships is critical for the future development of these polymeric materials. Particularly, the incorporation of ammonium-based counterions into these polymers offers a facile method to tune their electrostatic interactions and hydrophobicity. Applying this concept, a bulky dimethyloctylammonium (DMOA) counterion was used to modify the organic solubility of …


Capillary Wrinkling And Mechanical Properties: Single Layers, Bilayers, And Composites, Jooyoung Chang Oct 2019

Capillary Wrinkling And Mechanical Properties: Single Layers, Bilayers, And Composites, Jooyoung Chang

Doctoral Dissertations

In this dissertation, we aim to understand the mechanical properties of thin films and classes of wrinkle patterns of polymer films using capillary wrinkling. We discuss four independent research subjects. In the first project, we measure the thickness (t) dependence of Young’s modulus (E) of polymer thin films. Thin films were measured from bulk thicknesses down to thickness less than the radius of gyration (6 nm). E does not show any systematic change with t, although an increase in modulus was found for the thinnest poly(styrene) (PS) film. The second topic is stretching (Y) and bending (B) moduli of PS/poly(methyl …


Interfacial Interactions And Dynamic Adhesion Of Synthetic And Living Colloids In Flow, Molly Shave Aug 2019

Interfacial Interactions And Dynamic Adhesion Of Synthetic And Living Colloids In Flow, Molly Shave

Doctoral Dissertations

This thesis focuses on the interactions between flowing particles and a surface, where hydrodynamics couples with chemical interactions in order to modify the way they come into play. First this thesis shows how electrostatic chemical heterogeneities on a flowing particle affect the interactions with a wall, using a highly tunable electrostatically heterogenous system produced by adsorbing small amounts of cationic polyelectrolytes onto silica particles in suspension and studying their behavior in flow over the fixed surface. By comparing this behavior to a system with equivalent chemical heterogeneity on a channel wall it was shown that the rotation of a particle …


Increasing The Functionality Of Additive Manufacturing Through Atmospheric Microplasma And Nanotechnology, Alexander Jon Ulrich Aug 2019

Increasing The Functionality Of Additive Manufacturing Through Atmospheric Microplasma And Nanotechnology, Alexander Jon Ulrich

Doctoral Dissertations

Additive Manufacturing (AM) has been changing the manufacturing landscape for the last 20 years. As the interest and demand for both polymer and metal-based 3D printing has grown, the materials and machines used have increased in capabilities. Despite the growth and advancement, there are still a large number of improvements that can be made to add functionality to 3D printers. Metal AM, a subcategory of 3D printing, has garnered much attention among industrial applications with large companies such as General Electric trying to implement the technology to increase innovative designs for motors. Some of the limitations on AM have to …


Migration And Electropolymerization Of Methyl Methacrylate In Hardened Cement Paste Via Electrokinetic Treatment, Xi Xie Aug 2019

Migration And Electropolymerization Of Methyl Methacrylate In Hardened Cement Paste Via Electrokinetic Treatment, Xi Xie

Doctoral Dissertations

Porous concrete structures are susceptible to the intrusion of chemical species, such as sulfates, chlorides, and carbon dioxide. Many technologies have been developed to repair or rehabilitate damaged concrete. These include cathodic protection, corrosion inhibitor addition, or the use of coatings and sealers. In recent years, a developing technology, electrokinetic nanoparticle treatment, has been shown to reduce concrete porosity, increase strength, promote corrosion resistance, and extend durability. This dissertation was conducted to explore a novel treatment to reduce the porosity of concrete via the application of electrokinetic transportation and electro-initiated polymerization of methyl methacrylate (MMA).

Potassium persulfate (PSP) was used …


Double-Network Materials Via Frontal Polymerization & Supercritical Co2 Processing, Matthew Joseph Lampe Jul 2019

Double-Network Materials Via Frontal Polymerization & Supercritical Co2 Processing, Matthew Joseph Lampe

Doctoral Dissertations

This dissertation presents work focused on producing materials in non-equilibrium states by taking advantage of novel processing techniques. First, epoxy-based resins which can undergo radically promoted, cationic, thermal, frontal polymerization are investigated for their potential use as adhesives. These resins are found to be capable of sustaining propagating polymerization fronts between several different substrate materials, resulting in high levels of adhesion in some cases. In addition, a similar frontal resin was developed that can undergo sequential gelation and frontal polymerization. The gels are formed by radically crosslinking acrylate monomers within the epoxy resin. These gels can then be manipulated, and …


Finite Element Simulation Of Bonded And Mechanically Anchored Shear Interfaces Of Externally Applied Frp Sheets To Concrete And Wood-Concrete Composites, Alaa Al-Sammari Jul 2019

Finite Element Simulation Of Bonded And Mechanically Anchored Shear Interfaces Of Externally Applied Frp Sheets To Concrete And Wood-Concrete Composites, Alaa Al-Sammari

Doctoral Dissertations

Composite construction is prevalent in advanced structural systems where components of different materials are combined in the same structure to improve the performance of strong and economic structural sections. Maintaining continuity between the different structural components to produce monolithic structural behavior is challenging because of differences in the mechanical properties of these materials in terms of stiffness, strength, and ductility. The different components of the composite section are typically joined using adhesives and/or mechanical anchors to produce partial or full composite action. This dissertation discusses two types of shear interfaces intended to result in structural composite behavior. The first type …


Northeastern Species In Hybrid Cross Laminated Timber, Hamid Kaboli Jul 2019

Northeastern Species In Hybrid Cross Laminated Timber, Hamid Kaboli

Doctoral Dissertations

Known in the building industry throughout the world, Cross Laminated Timber (CLT) is a massive timber building material with outstanding structural, fire, and seismic properties. CLT is a cost-competitive, sustainable construction material is a good candidate as a substitute material for concrete, masonry, and steel, in mid-rise and high-rise buildings. CLT is perpendicular layers of dimensional lumbers usually laminated together and forming a massive structural panel. This dissertation explores the viability of utilizing Massachusetts grown Eastern Hemlock and Eastern White Pine in CLT panels as pure or in conjunction with other high-value wood products. 59% of Massachusetts’ lands are covered …


Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis Jul 2019

Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis

Doctoral Dissertations

Structural systems are potentially subjected to damage initiating scenarios throughout the course of their service time. Depending on the nature and extent of the damaging event, they may experience significant reduction or even complete loss of their mechanical performance. This dissertation delves into the mechanics of structural systems under the notion of missing members from their domain, investigating types of structural systems: a) multi-story steel framed buildings, and b) materials with a truss-lattice microstructure. Part I of the dissertation investigates the performance of multi-story steel framed buildings under a column removal scenario, developing an analytical framework for their quasi-static robustness …


Rheological Investigations Of Self-Assembled Block Copolymer Nanocomposites With Complex Architectures, Benjamin Yavitt Jul 2019

Rheological Investigations Of Self-Assembled Block Copolymer Nanocomposites With Complex Architectures, Benjamin Yavitt

Doctoral Dissertations

The self-assembly of block copolymers (BCP) into microphase separated structures is an attractive route to template and assemble functional nanoparticles (NP) into highly ordered nanocomposites and is central to the “bottom up” fabrication of future materials with tunable electronic, optical, magnetic, and mechanical properties. The optimization of the co-assembly requires an understanding of the fundamentals of phase behavior, intermolecular interactions and dynamics of the polymeric structure. Rheology is a novel characterization tool to investigate these processes in such systems that are not accessible by other means. With the combination of X-ray scattering techniques, structure-property relationships are determined as a function …


Quantitative Probing Of Vacancies And Ions Dynamics In Electroactive Oxide Materials, Jiaxin Zhu Mar 2019

Quantitative Probing Of Vacancies And Ions Dynamics In Electroactive Oxide Materials, Jiaxin Zhu

Doctoral Dissertations

Oxygen vacancy and ion dynamics in functional oxides are critical factors influencing electrical conductivity and electrochemical activity of oxides assemblies. The recent advancements in deposition and fabrication of oxide heterostructured films with atomic-level precision has led to discovery of intriguing physical properties and new artificial materials. While still under debate, researchers most often attribute these observed behaviors to unique oxygen vacancy distributions in the substrate near heterointerfaces. In electroactive oxides devices such as solid oxide cells (SOCs), oxygen vacancy and ion transport at the triple-phase boundary determines the performance of the device. This complex process motivates numerous remaining questions regarding …


Probing Quantized Excitations And Many-Body Correlations In Transition Metal Dichalcogenides With Optical Spectroscopy, Shao-Yu Chen Mar 2019

Probing Quantized Excitations And Many-Body Correlations In Transition Metal Dichalcogenides With Optical Spectroscopy, Shao-Yu Chen

Doctoral Dissertations

Layered transition metal dichalcogenides (TMDCs) have attracted great interests in recent years due to their physical properties manifested in different polytypes: Hexagonal(H)-TMDC,which is semiconducting, exhibits strong Coulomb interaction and intriguing valleytronic properties; distorted octahedral(T’)-TMDC,which is semi-metallic, is predicted to exhibit rich nontrivial topological physics. In this dissertation,we employ the polarization-resolved micron-Raman/PL spectroscopy to investigate the optical properties of the atomic layer of several polytypes of TMDC. In the first part for polarization-resolved Raman spectroscopy, we study the lattice vibration of both H and T’-TMDC, providing a thorough understanding of the polymorphism of TMDCs. We demonstrate that Raman spectroscopy is a …


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli Mar 2019

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications. Pore narrowing …


Development Of Functional Biomaterials Using Protein Building Blocks, Li-Sheng Wang Mar 2019

Development Of Functional Biomaterials Using Protein Building Blocks, Li-Sheng Wang

Doctoral Dissertations

Proteins have intrinsic molecular properties that are highly useful for materials applications, especially for biomaterials. My research has focused on translating these molecular properties to materials surface behavior. In one approach, I developed a fluorous-based thermal treatment strategy to generate stable thin films from a variety of naturally abundant proteins. The different surface properties generated from the choice of protein were utilized to modulate cell-surface interactions, prevent bacterial adhesions, and control drug loading/release. I have used nanoimprint lithography to generate patterned protein films for cell alignment. Coupling with inkjet printing deposition, I have fabricated mixed protein films with spatial and …


Chemical Stability And Performance Influence Of Choice Substituents And Core Conjugation Of Organic Semiconductors, Jack Ly Mar 2019

Chemical Stability And Performance Influence Of Choice Substituents And Core Conjugation Of Organic Semiconductors, Jack Ly

Doctoral Dissertations

Realizing organic based active materials for electronic devices, such as thin film transistors and photovoltaics, has been long sought after. Advancement in the field driven by chemists, engineers, and physicists alike have bolstered organic based semiconductor performance levels to rival those of traditional inorganic amorphous silicon-based devices. Within the field of organic semiconductors (OSC), two categories of active materials may be generalized: (1) polymer and (2) small molecule semiconductors. Each class of OSC inherently have their own advantages and disadvantages. Polymer semiconductors (PSC) allow a wide range in tunability via choice monomers and side chain engineering to illicit desirable energy …


Direct Patterning Of Nature-Inspired Surfaces For Biointerfacial Applications, Feyza Dundar Mar 2019

Direct Patterning Of Nature-Inspired Surfaces For Biointerfacial Applications, Feyza Dundar

Doctoral Dissertations

There are three major challenges for the design of patterned surfaces for biointerfacial applications: (i) durability of antibacterial/antifouling mechanisms, (ii) mechanical durability, and (iii) lifetime of the master mold for mass production of patterned surfaces. In this dissertation, we describe our contribution for the development of each of these challenges. The bioinspired surface, Sharklet AFTM, has been shown to reduce bacterial attachment via a biocide-free structure-property relationship effectively. Unfortunately, the effectiveness of polymer-based sharkskin surfaces is challenged over the long term by both eventual bacteria accumulation and a lack of mechanical durability. To address these common modes of …


Direct Printing Of Conductive Inks For Organic Electronics And Wearable Microfluidics, Aditi Naik Mar 2019

Direct Printing Of Conductive Inks For Organic Electronics And Wearable Microfluidics, Aditi Naik

Doctoral Dissertations

This dissertation examines the direct printing of conductive inks on polymeric substrates for applications in organic electronics, microfluidic valving systems, and wearable sweat sensors. The inexpensive production of solution-based electrodes with high electrical conductivity is necessary to enable the next-generation of printed, flexible, and organic electronics. Specifically, the optimization and printing of liquid-phase graphene ink and nanoparticle-based silver ink by soft nanoimprint lithography and inkjet-printing is discussed to achieve printed functional devices. Using scalable low-cost patterning systems, these flexible applications are compatible with roll-to-roll processing, enabling large-scale manufacturing. This research expands the knowledge of high-resolution printing optimization for the direct …


The Investigation Of Surface Barrier During Molecular Transport In Hierarchical Zeolites, Xiaoduo Qi Mar 2019

The Investigation Of Surface Barrier During Molecular Transport In Hierarchical Zeolites, Xiaoduo Qi

Doctoral Dissertations

Hierarchical zeolites with micropore lengths on the order of nanometers have been synthesized with the aim of reducing mass transfer limitation. However, due to large external surface to volume ratios, the mass transport in these materials can be hindered by a secondary rate limitation step imposed on the external surface of the zeolites. This has led to the general phenomenon referred to as “surface barriers”, which cause the enhancement in mass transport being far lower than expected. In order to fully unlock the potential of hierarchical zeolites, it is imperative to fundamentally understand the molecular transport in these new types …


Nanoscale Solidification Of Metals By Atomistic Simulations: From Nucleation To Nanostructural Evolution, Avik Mahata Jan 2019

Nanoscale Solidification Of Metals By Atomistic Simulations: From Nucleation To Nanostructural Evolution, Avik Mahata

Doctoral Dissertations

"Homogeneous nucleation during solidification in Al (fcc), Fe (bcc) and Mg (hcp) is studied by million-atom molecular dynamics (MD) utilizing the second nearest neighbor modified embedded atom method (2NN-MEAM) potentials. Spontaneous homogenous nucleation from the melt was produced without any influence of pressure, free surface effects and impurities. We also study the effect on the simulation size on homogenous nucleation and the heterogeneity in homogenous nucleation. The heterogeneity in homogenous nucleation originates from the twins, grain boundaries and short range order in the liquid during the initial stages of solidification.

To study the solid-liquid coexistence in binary Al alloys, interatomic …


Build Strategy Investigation Of Ti-6al-4v Produced Via A Hybrid Additive Manufacturing Process, Lei Yan Jan 2019

Build Strategy Investigation Of Ti-6al-4v Produced Via A Hybrid Additive Manufacturing Process, Lei Yan

Doctoral Dissertations

“Till now, laser metal deposition (LMD) has been developed with the capability of near-net shape high-performance metal parts fabrication, especially complicated titanium alloys, nickel alloys, and aluminum alloys. However, LMD processed parts usually do not meet end-use requirements without post treatments. In-process part quality inspection and inner features machining are impossible within a single LMD process. Hybrid additive manufacturing (HAM), which integrates additive and subtractive manufacturing in one process, has been proposed to increase the feasibility of complex parts fabrication. This dissertation aims to improve the applications of Ti-6Al-4V parts fabricated via a HAM technique. The first research topic is …


Development Of Functional Ionic Liquids For Separation And Recovery Of Rare Earth Elements, Mostafa Khodakarami Jan 2019

Development Of Functional Ionic Liquids For Separation And Recovery Of Rare Earth Elements, Mostafa Khodakarami

Doctoral Dissertations

“This research focused on the design and synthesis of task-specific ionic liquids for enhanced extraction and separation of rare earth elements (REEs). Two novel ammonium-based functional ionic liquids (FILs) with oxygen donating groups: trioctyl(2-ethoxy-2-oxoethyl)ammonium dihexyl diglycolamate, [OcGBOEt][DHDGA], and tricaprylmethylammonium dihexyl diglycolamate, [A336][DHDGA] were synthesized and tested for the recovery and separation of selected REEs from aqueous solutions. Functionalities with different denticities were incorporated into both anionic and cationic parts of ionic liquids, which are solely composed of incinerable atoms including C, H, O, and N. The structural, physical, and chemical properties of the synthesized FILs were studied using nuclear magnetic …


Atomistic Simulations Of Deformation In Metallic Nanolayered Composites, Sixie Huang Jan 2019

Atomistic Simulations Of Deformation In Metallic Nanolayered Composites, Sixie Huang

Doctoral Dissertations

"The mechanical behavior of Metallic Nanolayered Composites (MNCs) is governed by their underlying microstructure. In this dissertation, the roles of the interlayer spacing (grain size, d) and the intralayer biphase spacing (layer thickness, h) on mechanical response of Cu/Nb MNCs are examined by Molecular Dynamics (MD) simulations. The study of the strength of MNCs show that small changes in both d and h play a profound role in the relative plastic contributions from grain boundary sliding and dislocation glide. The interplay of d and h leads to a very broad transition region from grain boundary sliding dominated flow, where the …


Polyurea Aerogels: From Nanoscopic To Macroscopic Properties, Tahereh Taghvaee Jan 2019

Polyurea Aerogels: From Nanoscopic To Macroscopic Properties, Tahereh Taghvaee

Doctoral Dissertations

"The morphology of a material is intrinsically a qualitative property and in order to relate nanomorphology to synthetic conditions, it is necessary to express nano/micro-structure quantitatively. In this context, polyurea aerogels were chosen as a model system with demonstrated potential for rich nanomorphology and being guided by a statistical Design-of-Experiments model, a large array of materials (208) with identical chemical composition, but quite different nanostructures were prepared. By reflecting upon the SEM images, it was realized that our first pre-verbal impression about a nanostructure is related to its openness and texture; the former is quantified by porosity (Π), and the …


Development Of Stage-I Tempered High Strength Cast Steel For Ground Engaging Tools, Viraj Ashok Athavale Jan 2019

Development Of Stage-I Tempered High Strength Cast Steel For Ground Engaging Tools, Viraj Ashok Athavale

Doctoral Dissertations

"Ground Engaging Tools (GET) are the expendable replacement parts used in heavy machinery used with mining or construction equipment. GET’s protect the expensive machine components from the wear and tear found common in high-impact or high-abrasion environments. The goal of this project is to develop advanced next-generation alloy choices that outperforms the existing GET materials. A method of predicting tempered hardness of mixed microstructures was formulated. Using this model, two alloy series viz. Cr-Ni-Mo and Mn-Si-Mo-V were proposed and experimented with the goal of obtaining a high strength and impact resistant cast steel. Cast iterations of Cr-Ni-Mo alloy series were …