Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Dissertations, Theses, and Masters Projects

2005

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Photochemical Modification Of Polyethylene Terephthalate Surface, Zhengmao Zhu Jan 2005

Photochemical Modification Of Polyethylene Terephthalate Surface, Zhengmao Zhu

Dissertations, Theses, and Masters Projects

The prospect of obtaining desired surface-mediated characteristics while retaining bulk-mediated physical properties and avoiding potential environmental issues with wet chemical technology lends considerable appeal to photochemical approaches to surface modification.;We undertook a combined experimental and computational approach to investigate the effect of deep UV irradiation on the polyethylene terephthalate (PET) surface. its response to 172 nm UV from a xenon examiner lamp in the absence of oxygen was characterized with X-ray Photoelectron Spectroscopy (XPS), Time of Flight/Secondary Ion Mass Spectrometry (ToF/SIMS), transmission infrared spectroscopy (IR), and Atomic Force Microscopy (AFM). The surface chemistry details suggested that the primary photochemical reactions …


Characterization Of Ionic, Dipolar And Molecular Mobility In Polymer Systems, Zhenrong Guo Jan 2005

Characterization Of Ionic, Dipolar And Molecular Mobility In Polymer Systems, Zhenrong Guo

Dissertations, Theses, and Masters Projects

Changes in the ionic and dipolar molecular mobility in a polymer system are the basis for the changes in the dielectric mechanical properties of polymer materials. Frequency Dependent Dielectric Measurements (FDEMS) and Ion Time-of-Flight (ITOF) are two important techniques to investigate ionic and dipolar molecular mobility in polymer systems. The results can be related to the macro- and molecular dielectric, electrical and dynamic properties of polymeric materials. The combination of these two methods provides a full view of electric, dielectric and dynamic behavior for the systems as they undergo chemical and/or physical changes during polymerization crystallization, vitrification, and/or phase separation.;The …


Vibrational Lifetimes Of Hydrogen And Oxygen Defects In Semiconductors, Baozhou Sun Jan 2005

Vibrational Lifetimes Of Hydrogen And Oxygen Defects In Semiconductors, Baozhou Sun

Dissertations, Theses, and Masters Projects

Characterization of defect and impurity reactions, dissociation, and migration in semiconductors requires a detailed understanding of the rates and pathways of vibrational energy flow and of the coupling mechanisms between local modes and the phonon bath of the host material. Information on the inelastic microscopic interaction can be obtained by measuring the lifetime of local vibrational modes. This dissertation presents lifetime measurements of hydrogen and oxygen defects in semiconductors by means of time-resolved infrared pump-probe spectroscopy.;First, we measured the vibrational lifetime of H- and D-related bending modes in Si and other semiconductors. Time-resolved pump-probe and linewidth measurements reveal that the …


Electron Stimulated Desorption Of Hydronium Ions From Chromium Oxide Surfaces, Charles Randal Cole Jan 2005

Electron Stimulated Desorption Of Hydronium Ions From Chromium Oxide Surfaces, Charles Randal Cole

Dissertations, Theses, and Masters Projects

The mass spectral peak observed at 19 amu in residual gas analyzers at very high (<10-6 Torr) and ultrahigh vacuum (<10 -9 Torr) has often been attributed to fluorine. Using Fourier Transform Mass Spectrometry, the hydronium ion, H3O+, has been fully resolved from F+ and its correlation to water vapor concentration was determined to be linear as expected for a gas phase process. The comparison of the mass 19 signals for a conventional quadrupole mass spectrometer and a Fourier transform mass spectrometer on the same vacuum chamber indicated hydronium was the source of mass 19.;The partial pressures of H2O in the very high vacuum range and higher suggest there is sufficient H2O density for the hydronium ions to form through ion-molecule interactions because hydronium formation was found to directly correlate with the H2O partial pressure. However, in a QMS at UHV, formation of H3O+ appears to occur principally by electron stimulated desorption (ESD). Introducing hydrogen into the system from 1 Langmuir exposure to saturation (1 x 10-6 Torr for 8 hours) increased the H3O + ESD yield detected by the QMS by as much as a factor of 10. The initial hydronium ESD cross section from a hydrogen saturated grid was estimated to be sigma ∼ 1 x 10-19, cm2.;TOF-SIMS sputter yields from the stainless steel grid of a quadrupole mass spectrometer also showed small signals of H3O+, as well as its constituents (H+, O+ and OH) and a small amount of fluorine as F-, but no F+ or F+ complexes (HF+, etc.). Using x-ray photoelectron spectroscopy, a small amount (0.4%) of fluorine was found in the surface of stainless steel. Electron bombardment reduces the fluorine bound in surface complexes, but not metal halides found below the surface. However, heating the sample eliminated the F 1s signal entirely, indicating that fluorine is not likely to be the source of mass 19 in residual gas analysis. Also, changes in the spectral shoulders on the O 1s and Cr 2P3/2 peaks show that hydrogen dosing stainless steel and chromium increases the amount of hydroxides at the surface, while heating and electron bombardment reduce them.