Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

University of Texas at El Paso

Theses/Dissertations

Additive manufacturing

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Development And Characterization Of Novel Materials For The Advancement Of Additive Manufacturing By Material Extrusion 3d Printing, Jose Gilberto Siqueiros Jan 2018

Development And Characterization Of Novel Materials For The Advancement Of Additive Manufacturing By Material Extrusion 3d Printing, Jose Gilberto Siqueiros

Open Access Theses & Dissertations

The development of additive manufacturing technologies has been under the spotlight from the past decade due to its enormous potential to disrupt current manufacturing processes. Material extrusion 3D printing (ME3DP) is the most common type of additive manufacturing technology as it experienced an exponential growth after the expiration of the fused deposition modeling patent filed in 1989 by Scott Crump. The large interest behind this technology is generated from the capacity to create complex shapes, rapid prototyping, relatively ease of use, low cost, and high accessibility. The gradual evolution of material extrusion 3D printing calls to become a technology ordinarily …


Characterization Of High-Purity Niobium Structures Fabricated Using The Electron Beam Melting Process, Cesar Adrian Terrazas Jan 2014

Characterization Of High-Purity Niobium Structures Fabricated Using The Electron Beam Melting Process, Cesar Adrian Terrazas

Open Access Theses & Dissertations

Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120µm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam …


Fabrication Of A Nickel-Based Superalloy In Electron Beam Melting And Process Improvements Using Thermal Feedback From A Multi-Wavelength Pyrometer, Jonathan Minjares Jan 2014

Fabrication Of A Nickel-Based Superalloy In Electron Beam Melting And Process Improvements Using Thermal Feedback From A Multi-Wavelength Pyrometer, Jonathan Minjares

Open Access Theses & Dissertations

The focus of this research was to fabricate parts composed of a nickel-based superalloy containing high levels of aluminum and titanium (NSAT) by using electron beam melting (EBM) additive manufacturing (AM) technology and utilizing thermal feedback from a multi-wavelength pyrometer to perform process improvements leading to near defect-free parts. EBM is an AM technology that utilizes metal powder to fabricate parts in layer-by-layer manner. A multi-wavelength pyrometer was implemented in an Arcam S12 (Arcam AB, Sweden) EBM system to observe and record surface temperatures throughout fabrication. Temperature data from the EBM system and the multi-wavelength pyrometer were graphed using MATLAB …


Process Study And Control Of Electron Beam Melting Technology Using Infrared Thermography, Jorge Mireles Jan 2013

Process Study And Control Of Electron Beam Melting Technology Using Infrared Thermography, Jorge Mireles

Open Access Theses & Dissertations

An IR camera was installed in an Arcam A2 system (Arcam AB, Mölndal, Sweeden) and layer-by-layer image acquisition was achieved. The camera's capability to detect manufacturing defects was evaluated by implementing computer vision techniques using LabVIEW measurement and programming software (National Instruments, Austin, TX). Thermal maps acquired by the IR camera allowed layer-by-layer part temperature to be recorded. A core objective of this research was to study the impact of processing temperature on EBM-fabricated Ti-6Al-4V parts and achieve controlled mechanical properties. In this research, build variations were achieved by modifying parameters that change processing temperature from the standard processing temperature. …


Comparative Characterization Of Ni-Base Superalloys Fabricated By Laser And Electron Beam Melting Technologies, Krista Amato Jan 2013

Comparative Characterization Of Ni-Base Superalloys Fabricated By Laser And Electron Beam Melting Technologies, Krista Amato

Open Access Theses & Dissertations

Nickel-base superalloys have been used in cast and wrought, and powder metallurgy forms for nearly four decades for industrial and automotive applications. One drawback of cast alloys is that upon solidification, there is minimal microstructural control. Another issue to be improved is to eliminate the limitations of shapes and forms of fabricated alloys.

Rapid prototyping is a new technology of additive manufacturing that shows to be promising for the freeform fabrication of novel superalloys, including nickel-base alloys. New rapid manufacturing technologies allow us to produce parts in any shape that can be designed by computer-aided design (CAD) software. Additionally, the …


Additive Layer Manufacturing Of Ti-6al-4v By Electron Beam Melting From Powder Particles: Solid, Mesh And Foam Components Study, Sara M. Gaytan Jan 2009

Additive Layer Manufacturing Of Ti-6al-4v By Electron Beam Melting From Powder Particles: Solid, Mesh And Foam Components Study, Sara M. Gaytan

Open Access Theses & Dissertations

Additive Manufacturing by Electron Beam Melting Rapid Manufacturing is a technology that consists of the fabrication of a CAD design by melting powder particles in a layer by layer fashion. In this study, Ti-6Al-4V has been utilized to fabricate solid, mesh and foam components by EBM technologies. Powder analysis of Ti-6Al-4V was performed to obtain a better understanding of the porosity obtained by the system. After proper optimization of the machine, and porosity control, microstructural analysis was performed to the components already mentioned and correlated by transmission electron microscopy. Besides the microstructural analysis, tensile and hardness testing was performed to …