Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Manipulating Electromagnetic Waves With Enhanced Functionalities Using Nonlinear And Chiral Metamaterials, Sinhara Rishi Malinda Silva Nov 2017

Manipulating Electromagnetic Waves With Enhanced Functionalities Using Nonlinear And Chiral Metamaterials, Sinhara Rishi Malinda Silva

USF Tampa Graduate Theses and Dissertations

Metamaterials are artificial structures, which periodically arranged to exhibit fascinating electromagnetic properties, not existing in nature. A great deal of research in the field of metamaterial was conducted in a linear regime, where the electromagnetic responses are independent of the external electric or magnetic fields. Unfortunately, in linear regime the desired properties of metamaterials have only been achieved within a narrow bandwidth, around a fixed frequency. Therefore, nonlinearity is introduced into metamaterials by merging meta-atoms with well-known nonlinear materials. Nonlinear metamaterials are exploited in this dissertation to introduce and develop applications in microwave frequency with broadband responses. The nonlinearity was …


Growth, Characterization, And Function Of Ferroelectric, Ferromagnetic Thin Films And Their Heterostructures, Mahesh Hordagoda Nov 2017

Growth, Characterization, And Function Of Ferroelectric, Ferromagnetic Thin Films And Their Heterostructures, Mahesh Hordagoda

USF Tampa Graduate Theses and Dissertations

With recent trends in miniaturization in the electronics sector, ferroelectrics have gained popularity due to their applications in non-volatile RAM. Taking one step further researchers are now exploring multiferroic devices that overcome the drawbacks of ferroelectric (FE) and ferromagnetic (FM) RAM’s while retaining the advantages of both. The work presented in this dissertation focuses on the growth of FE and FM thin film structures. The primary goals of this work include, (1) optimization of the parameters in the pulsed laser deposition (PLD) of FE and FM films and their heterostructures, (2) development of a structure-property relation that leads to enhancements …


Organometal Halide Perovskite Solar Absorbers And Ferroelectric Nanocomposites For Harvesting Solar Energy, Chaminda Lakmal Hettiarachchi Nov 2017

Organometal Halide Perovskite Solar Absorbers And Ferroelectric Nanocomposites For Harvesting Solar Energy, Chaminda Lakmal Hettiarachchi

USF Tampa Graduate Theses and Dissertations

Organometal halide perovskite absorbers such as methylammonium lead iodide chloride (CH3NH3PbI3-xClx), have emerged as an exciting new material family for photovoltaics due to its appealing features that include suitable direct bandgap with intense light absorbance, band gap tunability, ultra-fast charge carrier generation, slow electron-hole recombination rates, long electron and hole diffusion lengths, microsecond-long balanced carrier mobilities, and ambipolarity. The standard method of preparing CH3NH3PbI3-xClx perovskite precursors is a tedious process involving multiple synthesis steps and, the chemicals being used (hydroiodic acid …


Understanding Gas Sorption Mechanisms In Metal–Organic Materials Via Computational Experimentation, Katherine A. Forrest Nov 2017

Understanding Gas Sorption Mechanisms In Metal–Organic Materials Via Computational Experimentation, Katherine A. Forrest

USF Tampa Graduate Theses and Dissertations

Metal–organic materials (MOMs), a type of porous crystalline structure composed of organic ligands jointed with metal ions, have captured the interest of scientists as potentially useful in gas sorption applications. Some of the most crucial avenues of investigation are in H2 storage (for use as a clean burning fuel source) and CO2 capture and sequestration (to remove the greenhouse gas from the environment).

A major advantage of MOMs for such applications is their high variability in terms of physical dimensions and chemical moieties, based on composition and synthesis conditions, making them potentially customizable for specific application if necessary structural characteristics …


Two Dimensional Layered Materials And Heterostructures, A Surface Science Investigation And Characterization, Yujing Ma Sep 2017

Two Dimensional Layered Materials And Heterostructures, A Surface Science Investigation And Characterization, Yujing Ma

USF Tampa Graduate Theses and Dissertations

The isolation of single layers of van der Waals materials has shown that their properties can be significantly different compared to their bulk counterparts. These observations, illustrates the importance of interface interactions for determining the materials properties even in weakly interacting materials and raise the question if materials properties of single layer van der Waals materials can be controlled by appropriate hetero-interfaces. To study interface effects in monolayer systems, surface science techniques, such as photoemission spectroscopy and scanning probe microscopy/spectroscopy, are ideally suited. However, before these characterization methods can be employed, approaches for the synthesis of hetero-van der Waals systems …


Photopolymerization Synthesis Of Magnetic Nanoparticle Embedded Nanogels For Targeted Biotherapeutic Delivery, Daniel Jonwal Denmark Jun 2017

Photopolymerization Synthesis Of Magnetic Nanoparticle Embedded Nanogels For Targeted Biotherapeutic Delivery, Daniel Jonwal Denmark

USF Tampa Graduate Theses and Dissertations

Conventional therapeutic techniques treat the patient by delivering a biotherapeutic to the entire body rather than the target tissue. In the case of chemotherapy, the biotherapeutic is a drug that kills healthy and diseased cells indiscriminately which can lead to undesirable side effects. With targeted delivery, biotherapeutics can be delivered directly to the diseased tissue significantly reducing exposure to otherwise healthy tissue. Typical composite delivery devices are minimally composed of a stimuli responsive polymer, such as poly(N-isopropylacrylamide), allowing for triggered release when heated beyond approximately 32 °C, and magnetic nanoparticles which enable targeting as well as provide a mechanism for …


Enhanced Visible Light Photocatalytic Remediation Of Organics In Water Using Zinc Oxide And Titanium Oxide Nanostructures, Srikanth Gunti Jun 2017

Enhanced Visible Light Photocatalytic Remediation Of Organics In Water Using Zinc Oxide And Titanium Oxide Nanostructures, Srikanth Gunti

USF Tampa Graduate Theses and Dissertations

The techniques mostly used to decontaminate air as well as water pollutants have drawbacks in terms of higher costs, require secondary treatment, and some methods are very slow. So, emphasis has been given to water though the use of photocatalysts, which break organic pollutants to water and carbon dioxide and leave no trace of by-products at the end. Photocatalytic remediation aligns with the waste and wastewater industries’ zero waste schemes with lower cost, eco-friendly and sustainable treatment technology. The commonly used photocatalysts such as titanium oxide (TiO2), zinc oxide (ZnO), tungsten oxide (WO3) have band gap …


Interference Of Light In Multilayer Metasurfaces: Perfect Absorber And Antireflection Coating, Khagendra Prasad Bhattarai Apr 2017

Interference Of Light In Multilayer Metasurfaces: Perfect Absorber And Antireflection Coating, Khagendra Prasad Bhattarai

USF Tampa Graduate Theses and Dissertations

We have studied several metamaterials structures with multiple layers by explaining them theoretically and verifying experimentally. The engineered structures we have designed work either as a perfect absorber or antireflection coating. The multilayer model as we call it Three Layer Model (TLM) has been developed, which gives the total reflection and transmission as a function of reflection and transmission of individual layers. By manipulating the amplitude and phase of the reflection and the transmission of the individual layers, we can get the required functionality of the optoelectronic devices. To get zero reflection in the both perfect absorber and the antireflection …


A Study Of Corrosion Monitoring Techniques Used In Urls For Metals, Sirui Li Mar 2017

A Study Of Corrosion Monitoring Techniques Used In Urls For Metals, Sirui Li

USF Tampa Graduate Theses and Dissertations

With the increasing use of fission-type nuclear power generation, particularly high-levels radioactive nuclear waste are generated, so the safe use of nuclear energy requires proper disposal of high-level radioactive nuclear waste. The selected treatment method is deep geological disposal. Therefore, underground research laboratory (URL) to prepare for deep geological disposal will also be carried out. Corrosion of metallic materials, which are closely related to the safety of URL, is the focus of this research project. This study selected monitoring techniques for URL and developed a rough monitoring scheme for temperature and resistivity in URL. In this study, corrosion-temperature and corrosion-resistivity …


Effects Of Microstructure And Alloy Concentration On The Corrosion And Tribocorrosion Resistance Of Al-Mn And We43 Mg Alloys, Hesham Y. Saleh Mraied Mar 2017

Effects Of Microstructure And Alloy Concentration On The Corrosion And Tribocorrosion Resistance Of Al-Mn And We43 Mg Alloys, Hesham Y. Saleh Mraied

USF Tampa Graduate Theses and Dissertations

The design of new engineering materials resistant to both wear damage and corrosion degradation becomes increasingly demanding in complex service conditions. Unfortunately, there is typically a tradeoff between wear and corrosion resistance, even for important passive metals such as Al alloys. This is because the presence of precipitates hardens the material but at the same time lead to unfavorable galvanic coupling between the precipitates and the matrix, resulting in accelerated corrosion. This work showed that Al (or Mg) supersaturated solid solution formed using non-equilibrium methods exhibited enhanced corrosion resistance without compromising strength. For Al, alloying with Mn up to ~ …


Engineered Nanocomposite Materials For Microwave/Millimeter-Wave Applications Of Fused Deposition Modeling, Juan De Dios Castro Mar 2017

Engineered Nanocomposite Materials For Microwave/Millimeter-Wave Applications Of Fused Deposition Modeling, Juan De Dios Castro

USF Tampa Graduate Theses and Dissertations

A variety of high-permittivity (high-k) and low-loss ceramic-thermoplastic composite materials as fused deposition modeling (FDM) feedstock, based on cyclo-olefin polymer (COP) embedded with sintered ceramic fillers, have been developed and investigated for direct digital manufacturing (DDM) of microwave components. The composites presented in this dissertation use a high-temperature sintering process up to 1500°C to further enhance the dielectric properties of the ceramic fillers. The electromagnetic (EM) properties of these newly developed FDM composites were characterized up to the Ku-band by using the cavity perturbation technique. Several models for prediction of the effective relative dielectric permittivity of composites based …