Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Engineering

The Role Of Silicon Content On Environmental Degradations Of T91 Steels, Ajit K. Roy, D. Maitra, Pankaj Kumar Aug 2008

The Role Of Silicon Content On Environmental Degradations Of T91 Steels, Ajit K. Roy, D. Maitra, Pankaj Kumar

Mechanical Engineering Faculty Research

T91 grade steels showed a gradual enhancement in tensile ductility at ambient temperature due to an increase in Si content from 0.5 to 2.0 weight percent (wt.%). However, the ultimate tensile strength was reduced only above 1.5 wt.% Si. The corrosion potential became more active in an acidic solution with increasing temperature. The cracking susceptibility in a similar environment under a slow-strain-rate (SSR) condition was enhanced at higher temperatures showing reduced ductility, time to failure, and true failure stress. Cathodic potentials applied to the test specimens in SSR testing caused an enhanced cracking tendency at 30 and 60°C, suggesting hydrogen …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2008

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The beneficial effects of Si on both the metallurgical and corrosion properties of Cr-Mo steels have previously been demonstrated at UNLV. Therefore, additions of Si ranging from 0.5-2.0 weight percent (wt%) was attempted in this investigation to explore Si effect on both the high temperature tensile properties and corrosion behavior of T91 grade steel. Corrosion studies in the presence of molten LBE could not be performed due to a lack of proper experimental facilities at UNLV. Therefore, detailed corrosion studies involving Si-containing T91 grade steels were performed in an aggressive aqueous solution of acidic pH. Further, significant efforts have been …


Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2007

Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is focused on the evaluation of the effects of silicon content on both the corrosion behavior and radiation-induced embrittlement of martensitic stainless steels having compositions similar to that of modified 9Cr-1Mo steel, also known as T91 grade steel. T91 grade steel was selected to be a candidate structural material to contain molten lead-bismuth eutectic (LBE), which can act both as a target material and a coolant during the spallation process. The operating temperature during this process may range from 420-550 °C. Thus, moderate tensile strength of the containment material (T91) is a major requirement.

The beneficial effects of …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2005 – January 2006), Ajit K. Roy Apr 2006

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2005 – January 2006), Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is intended to study the effect of Si content not only on the corrosion resistance but also on the radiation-induced embrittlement of martensitic stainless steels. The susceptibility of these alloys with different Si content to stress corrosion cracking, general corrosion and localized corrosion will be evaluated in the molten LBE and aqueous environments of different pH values using state-of-the-art testing techniques. Testing in the aqueous media is intended to develop baseline data for comparison purpose. Radiation-induced embrittlement of these alloys will initially be studied by irradiating the test specimens with bremmstrahlung gamma radiation from 20-40 MeV electron beams …


Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2006

Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is primarily focused on the evaluation of the effect of Si content on the susceptibility of modified 9Cr-1Mo-0.24V steel to stress corrosion cracking (SCC) and localized cracking in both molten lead-bismuth eutectic (LBE) and an aqueous solution of acidic pH.

Further, significant efforts are in progress to characterize the deformation mechanism of modified T91 grade steel as a function of temperature and strain rate. Simultaneously, surface analyses of the tested materials are ongoing using state-of-the-art techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM).


Cracking Of Martensitic Alloy Ep-823 Under Controlled Potential, Ajit K. Roy, M. K. Hossain Jan 2006

Cracking Of Martensitic Alloy Ep-823 Under Controlled Potential, Ajit K. Roy, M. K. Hossain

Mechanical Engineering Faculty Research

The susceptibility of martensitic Alloy EP-823 to stress corrosion cracking was evaluated with and without an applied cathodic potential using the slow-strain-rate (SSR) testing technique. The magnitude of the applied potential was based on the corrosion potential determined by cyclic polarization. The cracking susceptibility in an acidic environment at different temperatures was expressed in terms of the true failure stress (ơf), time to failure (TTF), and ductility parameters, including percent elongation (%El) and percent reduction in area (%RA). The data indicate that the magnitudes of ơr, TTF, %El, and %RA were reduced due to cathodic charging. …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (February – April 2005), Ajit K. Roy Jul 2005

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (February – April 2005), Ajit K. Roy

Transmutation Sciences Materials (TRP)

This proposal is intended to study the effect of Si content not only on the corrosion resistance but also on the radiation-induced embrittlement of martensitic stainless steels. The susceptibility of these alloys with different Si content to stress corrosion cracking, general corrosion and localized corrosion will be evaluated in the molten LBE and aqueous environments of different pH values using state-of-the-art testing techniques. Testing in the aqueous media is intended to develop baseline data for comparison purpose. Radiation-induced embrittlement of these alloys will initially be studied by irradiating the test specimens with bremmstrahlung gamma radiation from 20-40 MeV electron beams …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2004 – January 2005), Ajit K. Roy Apr 2005

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2004 – January 2005), Ajit K. Roy

Transmutation Sciences Materials (TRP)

This proposal is intended to study the effect of Si content not only on the corrosion resistance but also on the radiation-induced embrittlement of martensitic stainless steels. The susceptibility of these alloys with different Si content to stress corrosion cracking, general corrosion and localized corrosion will be evaluated in the molten LBE and aqueous environments of different pH values using state-of-the-art testing techniques. Testing in the aqueous media is intended to develop baseline data for comparison purpose. Radiation-induced embrittlement of these alloys will initially be studied by irradiating the test specimens with bremmstrahlung gamma radiation from 20-40 MeV electron beams …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (August 2004 – October 2004), Ajit K. Roy Jan 2005

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (August 2004 – October 2004), Ajit K. Roy

Transmutation Sciences Materials (TRP)

The purpose of this collaborative research project involving the University of Nevada Las Vegas (UNLV), Los Alamos National Laboratory (LANL) and Idaho State University (ISU) is to evaluate the effect of silicon (Si) content on the corrosion behavior and radiation-induced embrittlement of martensitic stainless steels having chemical compositions similar to that of the modified 9Cr-1Mo steel. Recent studies at LANL involving Alloy EP-823 of different Si content have demonstrated that increased Si content in this alloy may enhance the corrosion resistance in molten lead-bismutheutectic (LBE). Since very little data exists in the open literature on the beneficial effect of Si …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy Jan 2005

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The primary objective of this task was to evaluate the effects of environmental and mechanical parameters on environment induced degradations of candidate target structural materials for applications in spallation-neutron-target systems. The materials selected for evaluation and characterization were martensitic stainless steels including Alloys HT-9, EP-823, and 422.

Accelerator-driven transmutation systems involve bombarding a target material such as molten lead-bismuth-eutectic (LBE) by a proton beam, thereby producing neutrons. The molten LBE target will be contained in a subsystem structural container made of a suitable material such as Alloys HT-9, EP-823, and 422. During the transmutation process, the target structural material may …


Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2005

Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is focused on the evaluation of the effect of Si content on the corrosion behavior and radiation-induced embrittlement of martensitic steels having chemical compositions similar to that of modified 9Cr-1Mo steel. Numerous state-of-the-art experimental techniques are currently being planned to be employed to achieve the desired research goal.


Stress Corrosion Cracking And Hydrogen Embrittlement Of Martensitic Alloy Ep-823, Mohammad K. Hossain Dec 2004

Stress Corrosion Cracking And Hydrogen Embrittlement Of Martensitic Alloy Ep-823, Mohammad K. Hossain

UNLV Theses, Dissertations, Professional Papers, and Capstones

This investigation is focused on the evaluation of stress corrosion cracking (SCC), localized corrosion, and hydrogen embrittlement (HE) susceptibility of martensitic Alloy EP-823 in neutral and acidic solutions at ambient and elevated temperatures. While no failures were observed in smooth specimens in the neutral solution, failures were noticed in the 90°C acidic solution at constant-load (CL) leading to a threshold stress (O'th) of 102 ksi. The presence of a notch reduced the O'th value to 91 ksi in a similar environment. The ductility (%El and %RA), time-to-failure (TTF), and true failure stress (O'r) were gradually …


Environment Assisted Cracking Of Target Structural Materials Under Different Loading Conditions, Venkataramakrishnan Selvaraj Dec 2004

Environment Assisted Cracking Of Target Structural Materials Under Different Loading Conditions, Venkataramakrishnan Selvaraj

UNLV Theses, Dissertations, Professional Papers, and Capstones

Martensitic Alloy HT-9 has been tested for its evaluation of stress corrosion cracking resistance in neutral and acidic solutions at ambient and elevated temperatures incorporating smooth and notched cylindrical specimens under constant load and slow strain rate (SSR) conditions. C-ring and U-bend specimens have also been tested for stress corrosion cracking evaluation in the acidic solution. The role of hydrogen on the cracking tendency has been evaluated by cathodic applied potential.

The results of constant load testing enabled the determination of the threshold stress for stress corrosion cracking in susceptible environments. The magnitudes of ductility parameters were reduced with increasing …


Stress Corrosion Cracking Resistance Of Martensitic Stainless Steels For Transmutation Applications, Phani P. Gudipati Dec 2004

Stress Corrosion Cracking Resistance Of Martensitic Stainless Steels For Transmutation Applications, Phani P. Gudipati

UNLV Theses, Dissertations, Professional Papers, and Capstones

The susceptibility of Alloy EP-823 to stress corrosion cracking has been evaluated using smooth and notched cylindrical specimens in neutral and acidic solutions at ambient and elevated temperatures using constant load and slow strain rate testing (SSR) techniques. C-ring and U-bend specimens have also been tested in the acidic solution. The effect of hydrogen on the cracking susceptibility has been evaluated under controlled cathodic potential. While no failures were observed with smooth specimens at constant load, the notched specimens showed failure. The SSR test results indicate that the true failure stress (o'f), time to failure and ductility parameters …


Embrittlement And Localized Corrosion In Alloy Ht-9, Sudheer Sama Aug 2004

Embrittlement And Localized Corrosion In Alloy Ht-9, Sudheer Sama

UNLV Theses, Dissertations, Professional Papers, and Capstones

This investigation is focused on the evaluation of stress corrosion cracking (SCC), hydrogen embrittlement (HE) and localized corrosion susceptibility of Alloy HT -9 in neutral and acidic solutions at 30, 60 and 90°C. Constant-load and slow-strain-rate (SSR) testing techniques were used to evaluate the SCC and HE behavior of this alloy by using smooth and notched tensile specimens. Hydrogen effect on the cracking behavior was evaluated by applying cathodic (negative) potential to the test specimens. Localized corrosion susceptibility was evaluated by cyclic potentiodynamic polarization technique. The results of constant load SCC testing showed a threshold stress at 80% of the …


Environment-Induced Degradations In A Target Structural Material For Transmutation Applications, Ramprashad Prabhakaran Aug 2004

Environment-Induced Degradations In A Target Structural Material For Transmutation Applications, Ramprashad Prabhakaran

UNLV Theses, Dissertations, Professional Papers, and Capstones

This investigation is focused on the evaluation of stress corrosion cracking (SCC) and localized corrosion behavior of Type 422 stainless steel in aqueous environments at ambient and elevated temperature. The results of constant load SCC testing using smooth specimens showed no failure in the neutral solution but a threshold stress of 97 ksi was observed in the 90°C acidic environment. SCC testing by the slow-strain-rate test method indicate that the time-to-failure, true failure stress and ductility parameters were gradually reduced with increasing temperature, showing more pronounced effect in the acidic solution. The application of a controlled cathodic potential showed further …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Annual Progress Report (May 2003 – May 2004), Ajit K. Roy Jul 2004

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Annual Progress Report (May 2003 – May 2004), Ajit K. Roy

Transmutation Sciences Materials (TRP)

As indicated in the original proposal, the primary objective of this task was to evaluate the effect of hydrogen on environment-assisted cracking of candidate target structural materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization were martensitic stainless steels including Alloy EP 823, HT-9, and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) of these materials were evaluated in neutral and acidic aqueous environments using smooth and notched tensile specimens under constant-load (CL) and slow-strain-rate (SSR) conditions. Further, the …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy May 2004

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The purpose of this collaborative research project involving the University of Nevada Las Vegas (UNLV), Los Alamos National Laboratory (LANL) and Idaho State University (ISU) is to evaluate the effect of silicon (Si) content on the corrosion behavior and radiation-induced embrittlement of martensitic stainless steels having chemical compositions similar to that of the modified 9Cr-1Mo 2 steel. Recent studies at LANL involving Alloy EP-823 of different Si content have demonstrated that increased Si content in this alloy may enhance the corrosion resistance in molten lead-bismuth-eutectic (LBE). Since very little data exists in the open literature on the beneficial effect of …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy Jan 2004

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of environmental and mechanical parameters on environment induced degradations of candidate target structural materials for applications in spallation-neutron-target systems, such as accelerator-driven systems for the transmutation of waste. The materials selected for evaluation and characterization are martensitic stainless steels including Alloys HT-9, EP-823 and Type 422 stainless steel (SS).

More recently, this experimental program has been expanded to evaluate the effect of molten lead-bismuth eutectic (LBE) on the corrosion behavior of target structural materials in the presence of oxygen. Since the Materials Performance Laboratory (MPL) at UNLV currently cannot …


Stress Corrosion Cracking Of Target Material, Mohammad K. Hossain Jan 2004

Stress Corrosion Cracking Of Target Material, Mohammad K. Hossain

Transmutation Sciences Materials (TRP)

The primary objective of this paper is to evaluate the effect of hydrogen on environment assisted cracking of candidate target materials for transmutation applications. Transmutation refers to transformation of long-lived actinides and fission products from spent nuclear fuels (SNF), and occurs when the nucleus of an atom changes because of natural radioactive decay, nuclear fission, nuclear fusion, neutron capture, or other related processes. Martensitic Alloy EP 823 was selected to be the candidate alloy for this investigation. During the initial phase, the stress corrosion cracking (SCC) behavior of this alloy was evaluated in neutral (pH: 6-7) and acidic (pH: 2-3) …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Quarterly Progress Report (June 1 – August 31, 2003), Ajit K. Roy, Brendan O'Toole Oct 2003

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Quarterly Progress Report (June 1 – August 31, 2003), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

As indicated in the original proposal, the primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate target materials for applications in spallationneutron- target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including Alloy HT-9, Alloy EP 823 and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these materials are being evaluated in aqueous environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. …


Task 32 Delayed Hydride Cracking Of Spent Fuel Cladding Under Repository Conditions, Ajit K. Roy, Anthony Hechanova, Amy J. Smiecinski Sep 2003

Task 32 Delayed Hydride Cracking Of Spent Fuel Cladding Under Repository Conditions, Ajit K. Roy, Anthony Hechanova, Amy J. Smiecinski

Publications (YM)

The objective of this quality-affecting task is to evaluate the susceptibility of spent nuclear fuel cladding materials (zirconium alloys) to stress corrosion cracking (SCC), delayed hydride cracking (DHC) and localized corrosion (pitting/crevice) in simulated repository environments. During the first year of this project, major efforts were focused on developing the infrastructure for performing the desired testing involving two highly corrosion-resistant alloys namely, zircaloy-2 (Zr-2) and zircaloy-4 (Zr-4) in simulated concentrated acidic water (SAW) and modified SAW (SAWM). Modification of the SAW chemistry was done by adding hydrochloric acid (HC1) to achieve lower pH. The construction of the "Materials Performance Laboratory …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Annual Progress Report (May 2002 – May 2003), Ajit K. Roy, Brendan O'Toole Jun 2003

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Annual Progress Report (May 2002 – May 2003), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

As indicated in the original proposal, the primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate target materials for applications in spallationneutron- target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including Alloy HT-9, Alloy EP 823 and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these materials are being evaluated in aqueous environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. …


Stress Corrosion Cracking Of Type 422 Stainless Steel For Applications In Spallation-Neutron-Target Systems, Ramprashad Prabhakaran Mar 2003

Stress Corrosion Cracking Of Type 422 Stainless Steel For Applications In Spallation-Neutron-Target Systems, Ramprashad Prabhakaran

Transmutation Sciences Materials (TRP)

Introduction

• This research program is aimed at evaluating different types of environment-induced degradation of candidate target materials for applications in transmutation of spent nuclear fuels (SNF).

• Transmutation refers to the elimination of long-lived actinides and fission products from SNF.

Objectives

• Evaluate susceptibility of candidate target materials to stress corrosion cracking (SCC) and localized corrosion (pitting and crevice) in neutral and acidic aqueous environments at ambient and elevated temperatures

• Determine the extent and morphology of cracking in tested materials as functions of experimental and environmental variables including pH, temperature, loading conditions and specimen geometry

• Develop mechanistic …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy, Brendan O'Toole Feb 2003

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

During the past two years (2001-2002) of this project, the primary effort was focused on evaluating the effect of hydrogen on the cracking behavior of candidate target materials namely, Alloys EP-823, HT-9 and 422 in aqueous environments of different pH values at ambient and elevated temperatures. More recently, emphasis is being placed to evaluate the cracking behavior of these materials in molten lead-bismuth eutectic (LBE) environment at much higher testing temperatures so as to compare the cracking susceptibility in environments containing molten metals and aqueous solutions, respectively. The most recent tests to evaluate the cracking susceptibility were primarily based on …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy, Brendan O'Toole, Zhiyong Wang, David W. Hatchett Jan 2003

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy, Brendan O'Toole, Zhiyong Wang, David W. Hatchett

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the potential for the environmentally-assisted cracking of candidate target materials for applications in spallation-neutron-target systems, such as accelerator-driven system for the transmutation of waste. The materials selected for evaluation and characterization are martensitic stainless steels (SS) including Alloys HT- 9, EP 823 and Type 422 stainless steel.

More recently, this experimental program has been expanded to evaluate the effect of molten lead-bismuth eutectic (LBE) on the corrosion behavior of target materials in the presence of oxygen. Since the materials performance laboratory (MPL) at UNLV currently cannot accommodate this type of testing, …


Effects Of Environmental Variables And Stress Concentration On Target Materials, Sudheer Sama Jan 2003

Effects Of Environmental Variables And Stress Concentration On Target Materials, Sudheer Sama

Transmutation Sciences Materials (TRP)

This paper presents a brief summary on stress corrosion cracking (SCC) behavior of alloy HT 9. The susceptibility of this alloy to SCC was evaluated by using constant load and slow strain rate test techniques in neutral and acidic solutions at ambient temperature and 90°C. A proof ring was used to apply tensile load to the smooth specimen for 30 days in constant load testing. In slow strain rate testing, the specimen was continuously strained in tension at a rate of 3.3 × 10-6 sec-1 until fracture.


Investigation Of The Corrosion Of Steel By Lead-Bismuth Eutectic (Lbe) Using Scanning Electron Microscopy And X-Ray Photoelectron Spectroscopy, Daniel Koury Dec 2002

Investigation Of The Corrosion Of Steel By Lead-Bismuth Eutectic (Lbe) Using Scanning Electron Microscopy And X-Ray Photoelectron Spectroscopy, Daniel Koury

UNLV Theses, Dissertations, Professional Papers, and Capstones

Lead Bismuth Eutectic (LBE) has been proposed for use in programs for accelerator transmutation of waste. LBE is the leading candidate material as a spallation target and an option for the sub-critical blanket coolant. The corrosion of 316 and 316L stainless steels by LBE has been studied using UNLV's facilities for Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). We have compared exposed and unexposed samples and studied the differences. Some amount of surface contamination is present on the samples and has been removed by ionbeam etching. The unexposed samples reveal typical stainless steel characteristics: a chromium oxide passivation …


Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems: Quarterly Progress Report (June 01 – August 31, 2002), Ajit K. Roy, Brendan O'Toole Aug 2002

Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems: Quarterly Progress Report (June 01 – August 31, 2002), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate target materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including Alloy HT-9, Alloy EP 823 and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these materials are being evaluated in environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. Further, the localized corrosion behavior of these alloys …


Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems: Annual Progress Report (May 2001 – May 2002), Ajit K. Roy, Brendan O'Toole Jun 2002

Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems: Annual Progress Report (May 2001 – May 2002), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate target materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including Alloy HT-9, Alloy EP 823 and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these materials are being evaluated in environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. Further, the localized corrosion behavior of these alloys …