Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Doppler Broadening Analysis Of Steel Specimens Using Accelerator Based In Situ Pair Production, V. Makarashvili, Douglas P. Wells, Ajit K. Roy Aug 2009

Doppler Broadening Analysis Of Steel Specimens Using Accelerator Based In Situ Pair Production, V. Makarashvili, Douglas P. Wells, Ajit K. Roy

Mechanical Engineering Faculty Research

Positron Annihilation Spectroscopy (PAS) techniques can be utilized as a sensitive probe of defects in materials. Studying these microscopic defects is very important for a number of industries in order to predict material failure or structural integrity. We have been developing gamma‐induced pair‐production techniques to produce positrons in thick samples ( ∼4–40 g/cm2, or ∼0.5–5 cm in steel). These techniques are called ‘Accelerator‐based Gamma‐induced Positron Annihilation Spectroscopy’ (AG‐PAS). We have begun testing the capabilities of this technique for imaging of defect densities in thick structural materials. As a first step, a linear accelerator (LINAC) was employed to produce photon beams …


The Effects Of Pressure On Wide Bandgap Gan Semiconductors, William Kang, Linda Tran, Eunja Kim Aug 2009

The Effects Of Pressure On Wide Bandgap Gan Semiconductors, William Kang, Linda Tran, Eunja Kim

Undergraduate Research Opportunities Program (UROP)

Gallium nitride (GaN) is a group-III nitride semiconductor; which may prove useful in developing optical instruments that operate under high ambient pressures. The purpose of this project is to examine the properties of GaN under varying conditions. The methods used in this experiment consist of modeling free energy as a function of lattice constants; calculating bond lengths, bond strengths, and bulk moduli; and comparing the resultant data with values in published literature. We will also compare these results with experimental data drawn from x-ray diffraction scans. By doing so, we hope to determine whether gallium nitride is suitable for use …


Design And Fabrication Of A Small Prototype Airframe Structure, Kimberly Lynn Clark May 2009

Design And Fabrication Of A Small Prototype Airframe Structure, Kimberly Lynn Clark

UNLV Theses, Dissertations, Professional Papers, and Capstones

This project called for a first-generation prototype aircraft with hovering capabilities that was lightweight. The focus of this study was to design a small low-cost prototype composite airframe that meets specified requirements, analyze structures using finite element analysis and mechanical testing, and construct a prototype using proven composite manufacturing techniques. One fuselage, one wing, and several engine nacelles were designed and fabricated. Several design and fabrication methods and materials were analyzed, with focus given to the nacelles, and recommendations were provided for the manufacture of the first generation airframe based on time, weight, and cost.


Modulated Nanopores Using Pulse Anodization On Thin Aluminum, Mahesh Babu Gunukula May 2009

Modulated Nanopores Using Pulse Anodization On Thin Aluminum, Mahesh Babu Gunukula

UNLV Theses, Dissertations, Professional Papers, and Capstones

Nanoporous anodic aluminum oxide has traditionally been made in one of two ways: "Mild Anodization (MA)" or "Hard Anodization (HA)". The former method produces self-ordered pore structures but it is slow and only works for a narrow range of processing conditions; the latter method, which is widely used in the aluminum industry, is faster but it produces films with disordered pore structures. Here we report a novel approach termed "pulse anodization" that combines the advantages of the MA and HA processes. By designing the pulse sequences it is possible to control both the composition and pore structure of the anodic …


The Effect Of Silicon Content On Impact Toughness Of T91 Grade Steels, Ajit K. Roy, Pankaj Kumar, Debajyoti Maitra Mar 2009

The Effect Of Silicon Content On Impact Toughness Of T91 Grade Steels, Ajit K. Roy, Pankaj Kumar, Debajyoti Maitra

Mechanical Engineering Faculty Research

The impact resistance of silicon (Si)-containing modified 9Cr-1Mo steels has been investigated within a temperature regime of -40 to 440°C using the Charpy method. The results indicate that the energies absorbed in fracturing the tested specimens were substantially lower at temperatures of -40, 25, and 75°C compared to those at elevated temperatures. Lower impact energies and higher ductile-to-brittle-transition-temperatures (DBTTs) were observed with the steels containing 1.5 and 1.9 wt.% Si. The steels containing higher Si levels exhibited both ductile and brittle failures at elevated temperatures. However, at lower temperatures, brittle failures characterized by cleavage and intergranular cracking were observed for …


Corrosion Research On Rock Bolts And Steel Sets For Sub-Surface Reinforcement Of The Yucca Mountain Repository, Dhanesh Chandra, Jaak J.K. Daemen Feb 2009

Corrosion Research On Rock Bolts And Steel Sets For Sub-Surface Reinforcement Of The Yucca Mountain Repository, Dhanesh Chandra, Jaak J.K. Daemen

Publications (YM)

Underground nuclear waste storage repositories generally use steels and super alloys for various structural members and storage containers. These materials are susceptible to corrosion due to seepage of water. We studied rock bolt materials for reinforcing tunnels and containment materials for storing nuclear waste materials. In general, the design of underground support materials for tunnels are mainly based on mechanical behavior of the materials, but not much was known about the interaction of the seepage YM waters with the structural members under various conditions in the tunnels. The sources of water in the Yucca Mountain (YM) repository are due to …


Spectroscopic Investigation Of Palladium-Copper Bimetallic Systems For Pem Fuel Cell Catalysts, Timo Hofmann Jan 2009

Spectroscopic Investigation Of Palladium-Copper Bimetallic Systems For Pem Fuel Cell Catalysts, Timo Hofmann

UNLV Theses, Dissertations, Professional Papers, and Capstones

One of the main barriers to commercialization of polymer electrolyte membrane fuel cells systems is cost, which is largely due to the need of platinum (Pt)-containing catalysts. In this thesis we investigate bimetallic systems consisting of a base metal (copper) and a noble metal (palladium) that, as an alloy on the nanoscale, mimic the electronic properties that make Pt desirable as a catalyst.

We present a detailed investigation of the electronic structure of carbon-supported Pd/Cu nanoparticle catalysts, model bilayer thin film systems, alloys, and various metal reference samples. We have investigated the valence band structure of the catalysts using a …


Study Of Corrosion Of Materials In The Sulfur-Iodine Hydrogen Production Cycle, Thao Trung Ho Jan 2009

Study Of Corrosion Of Materials In The Sulfur-Iodine Hydrogen Production Cycle, Thao Trung Ho

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hydrogen is of great interest since the availability of traditional fossil fuels is in decline. Strictly speaking, hydrogen is not a primary source of energy but is an energy carrier, since energy typically must be used from another source (electricity, natural gas, coal, etc.) to produce it. Of hydrogen production techniques, the Sulfur-Iodine thermochemical water splitting process (S-I cycle), which was proposed by General Atomics (GA), is promising with its simplicity and high efficiency. Most of the chemicals are recycled except water. However, the S-I cycle operates in a harsh, corrosive environment in the presence of a mixture of iodine …


Yttrium And Hydrogen Superstructure And Correlation Of Lattice Expansion And Proton Conductivity In The Bazr0.9y0.1o2.95 Proton Conductor, A. Braun, A. Ovalle, V. Pomjakushin, A. Cervellino, S. Erat, Wayne C. Stolte, T. Graule Jan 2009

Yttrium And Hydrogen Superstructure And Correlation Of Lattice Expansion And Proton Conductivity In The Bazr0.9y0.1o2.95 Proton Conductor, A. Braun, A. Ovalle, V. Pomjakushin, A. Cervellino, S. Erat, Wayne C. Stolte, T. Graule

Chemistry and Biochemistry Faculty Research

Bragg reflections in Y-resonant x-ray diffractograms of BaZr0.9Y0.1O2.95 (BZY10) reveal that Y is organized in a superstructure. Comparison with neutron diffraction superstructure reflections in protonated/deuterated BZY10 suggests that both superstructures are linked, and that protons move in the landscape imposed by the Y. The thermal lattice expansion decreases abruptly for protonated BZY10 at T≥648±20 K, coinciding with the onset of lateral proton diffusion and suggesting a correlation of structural changes and proton conductivity. The chemical shift in the Y L1-shell x-ray absorption spectra reveals a reduction from Y3+ toward Y2+ upon …


Model For Alumina Nanopore-Based Optical Filter, Nathan Lehman, Rama Venkat, Robert A. Schill Jan 2009

Model For Alumina Nanopore-Based Optical Filter, Nathan Lehman, Rama Venkat, Robert A. Schill

Electrical & Computer Engineering Faculty Research

Alumina nanopore structures find applications in magnetic sensors, optical filters, and various biological devices. In this work, we present a ray-optics model for the optical filter. We present a detailed simulation and a simplified analytical expression for the reflectance as a function of the alumina parameters such as pore diameter, pore density, alumina thickness, and a function of the wavelength and angle of incidence of the illuminating plane electromagnetic wave. The reflectance vs wavelength in the range of 400–800nm obtained from the simulation and the analytical expression are compared with that of the experiments for thin and thick alumina. All …


Damage Characterization Of Beam-Column Joints Reinforced With Gfrp Under Reversed Cyclic Loading, Aly M. Said Jan 2009

Damage Characterization Of Beam-Column Joints Reinforced With Gfrp Under Reversed Cyclic Loading, Aly M. Said

Civil and Environmental Engineering and Construction Faculty Research

The use of fiber reinforced polymer (FRP) reinforcement in concrete structures has been on the rise due to its advantages over conventional steel reinforcement such as corrosion. Reinforcing steel corrosion has been the primary cause of deterioration of reinforced concrete (RC) structures, resulting in tremendous annual repair costs. One application of FRP reinforcement to be further explored is its use in RC frames. Nonetheless, due to FRP's inherently elastic behavior, FRP-reinforced (FRP-RC) members exhibit low ductility and energy dissipation as well as different damage mechanisms. Furthermore, current design standards for FRP-RC structures do not address seismic design in which the …


Oxidation Modeling By Means Of Molecular Dynamics, Chaiyod Soontrapa Jan 2009

Oxidation Modeling By Means Of Molecular Dynamics, Chaiyod Soontrapa

UNLV Theses, Dissertations, Professional Papers, and Capstones

Oxidation modeling is normally engineered to study systems at macroscopic scales, mostly in analytical forms based on diffusion theories. The associated time scale is usually in months, days, or minutes, and the length scale is in the order of microns. In this dissertation, oxidation modeling is performed at atomistic scale with the time and length scales in picoseconds and angstroms, respectively, using molecular dynamics. Molecular dynamics simulations generate trajectories of each atom or particle in a system according to the laws of physics. Studying oxidations under the atomistic point of view can offer new insights on atomic behaviors and influencing …


Tensile Strength And Failure Criterion Of Analog Lithophysal Rock, James A. Nott Jan 2009

Tensile Strength And Failure Criterion Of Analog Lithophysal Rock, James A. Nott

UNLV Theses, Dissertations, Professional Papers, and Capstones

This project determines the tensile strength of lithophysal analog rock and presents failure criteria that can be used by geotechnical engineers to evaluate underground structures in rock. The physical and mechanical properties that are related to the failure criterion, such as porosity, compressive strength and modulus of elasticity, are also discussed. Experimental tensile tests were made using direct uniaxial and indirect Brazilian tests. Three 4-inch specimens were fabricated and tested in direct uniaxial tensile tests using Hydro-Stone TB. The results showed that the elastic tensile modulus of elasticity was within two percent of existing data for the compressive modulus of …


Fracture Toughness, Crack-Growth-Rate And Creep Studies Of Alloy 276, Joydepp Pal Jan 2009

Fracture Toughness, Crack-Growth-Rate And Creep Studies Of Alloy 276, Joydepp Pal

UNLV Theses, Dissertations, Professional Papers, and Capstones

Austenitic nickel-base Alloy 276 had been proposed to be a candidate structural material within the purview of the nuclear hydrogen initiative program. A mechanistic understanding of high temperature tensile deformation of this alloy has already been presented in an earlier investigation. The current investigation has been focused on the evaluation of crack-growth behavior, fracture toughness, stress-corrosion-cracking and creep deformation of this alloy as functions of different metallurgical and mechanical variables. The results of crack-growth study under cyclic loading indicate that this alloy exhibited greater cracking tendency with increasing temperature at a constant load ratio (R). However, the effect of temperature …


Effects Of Mechanical And Metallurgical Variables On Creep, Fracture Toughness And Crack Growth Behavior Of Alloy 617, Muhammad Hasibul Hasan Jan 2009

Effects Of Mechanical And Metallurgical Variables On Creep, Fracture Toughness And Crack Growth Behavior Of Alloy 617, Muhammad Hasibul Hasan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Nickel base Alloy 617 has been identified to be a suitable structural material for heat exchanger applications in both hydrogen and electricity generation using nuclear heat. A maximum operating temperature of 950°C has been specified by department of energy (DOE) for both applications to achieve a maximum possible efficiency. Therefore, an extensive investigation has been pursued to evaluate time-dependent-deformation (Creep) of this alloy as functions of temperature and applied load. The results indicate that this alloy exhibited severe creep deformation, characterized by development of an instantaneous tertiary creep region at 850 and 950°C under applied stresses corresponding to its 35% …


Metal Induced Crystallization Of Silicon Thin Films, Sandeep Kumar Raju Sangaraju Jan 2009

Metal Induced Crystallization Of Silicon Thin Films, Sandeep Kumar Raju Sangaraju

UNLV Theses, Dissertations, Professional Papers, and Capstones

Low temperature crystallization of thin film silicon is important for many industrial applications including flat panel displays and silicon thin film solar cells. Unfortunately this remains a major challenge since crystallization temperature of silicon is above 1,000 degrees Celsius, thus limiting to substrates that can tolerate high temperatures. The inability to deposit crystalline thin films on glass substrates is the reason why flat panel display industry uses amorphous silicon for LCD active matrix displays. Thus the ability to deposit crystallized thin film silicon at low temperatures will have significant impact on thin film silicon applications. It has been observed that …