Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

University of Nevada, Las Vegas

Physics & Astronomy Faculty Research

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Universal Image Segmentation For Optical Identification Of 2d Materials, Joshua Island, Randy M. Sterbentz, Kristine L. Haley Mar 2021

Universal Image Segmentation For Optical Identification Of 2d Materials, Joshua Island, Randy M. Sterbentz, Kristine L. Haley

Physics & Astronomy Faculty Research

Machine learning methods are changing the way data is analyzed. One of the most powerful and widespread applications of these techniques is in image segmentation wherein disparate objects of a digital image are partitioned and classified. Here we present an image segmentation program incorporating a series of unsupervised clustering algorithms for the automatic thickness identification of two-dimensional materials from digital optical microscopy images. The program identifies mono- and few-layer flakes of a variety of materials on both opaque and transparent substrates with a pixel accuracy of roughly 95%. Contrasting with previous attempts, application generality is achieved through preservation and analysis …


On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young Apr 2020

On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young

Physics & Astronomy Faculty Research

The efficient modulation and control of ultrafast signals on-chip is of central importance in terahertz (THz) communications and a promis- ing route toward sub-diffraction limit THz spectroscopy. Two-dimensional (2D) materials may provide a platform for these endeavors. We explore this potential, integrating high-quality graphene p–n junctions within two types of planar transmission line circuits to modulate and emit picosecond pulses. In a coplanar strip line geometry, we demonstrate the electrical modulation of THz signal transmission by 95%. In a Goubau waveguide geometry, we achieve complete gate-tunable control over THz emission from a photoexcited graphene junction. These studies inform the development …


Computational Design Of Flexible Electride With Nontrivial Band Topology, Sheng-Cai Zhu, Lei Wang, Jing-Yu Qu, Jun-Jie Wang, Timofey Frolov, Xing-Qiu Chen, Qiang Zhu Feb 2019

Computational Design Of Flexible Electride With Nontrivial Band Topology, Sheng-Cai Zhu, Lei Wang, Jing-Yu Qu, Jun-Jie Wang, Timofey Frolov, Xing-Qiu Chen, Qiang Zhu

Physics & Astronomy Faculty Research

Electrides, with their excess electrons distributed in crystal cavities playing the role of anions, exhibit a variety of unique electronic and magnetic properties. In this work, we employ the first-principles crystal structure prediction to identify a new prototype of A3B electride in which both interlayer spacings and intralayer vacancies provide channels to accommodate the excess electrons in the crystal. This A3B type of structure is calculated to be thermodynamically stable for two alkaline metals oxides (Rb3O and K3O). Remarkably, the unique feature of multiple types of cavities makes the spatial arrangement of anionic electrons highly flexible via elastic strain engineering …