Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Giant Raman Enhancement On Nanoporous Gold Film By Conjugating With Nanoparticles For Single-Molecule Detection, Lihua Qian, Biswajit Das, Yan Li, Zhilin Yang Jan 2010

Giant Raman Enhancement On Nanoporous Gold Film By Conjugating With Nanoparticles For Single-Molecule Detection, Lihua Qian, Biswajit Das, Yan Li, Zhilin Yang

Electrical & Computer Engineering Faculty Research

Hot spots have the contradictively geometrical requirements for both the narrowest interstices to provide strong near-field coupling, and sufficient space to allow entrance of the analytes. Herein, a two-step method is employed to create hot spots within hybrid nanostructures, which consist of self-supported nanoporous gold films with the absorbed probes and subsequent nanoparticle conjugates without surface agents or mechanical motion. The molecules confined into 1 nm interstice exhibit 2.9 × 107 times enhancement in Raman scattering compared to pure nanoporous gold. Giant enhancement primarily results from strong near-field coupling between nanopore and nanoparticle, which is theoretically confirmed by finite-difference …


Model For Alumina Nanopore-Based Optical Filter, Nathan Lehman, Rama Venkat, Robert A. Schill Jan 2009

Model For Alumina Nanopore-Based Optical Filter, Nathan Lehman, Rama Venkat, Robert A. Schill

Electrical & Computer Engineering Faculty Research

Alumina nanopore structures find applications in magnetic sensors, optical filters, and various biological devices. In this work, we present a ray-optics model for the optical filter. We present a detailed simulation and a simplified analytical expression for the reflectance as a function of the alumina parameters such as pore diameter, pore density, alumina thickness, and a function of the wavelength and angle of incidence of the illuminating plane electromagnetic wave. The reflectance vs wavelength in the range of 400–800nm obtained from the simulation and the analytical expression are compared with that of the experiments for thin and thick alumina. All …


An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das Mar 2008

An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das

Electrical & Computer Engineering Faculty Research

Nanoparticles of metals and semiconductors are promising for the implementation of a variety of photonic and electronic devices with superior performances and new functionalities. However, their successful implementation has been limited due to the lack of appropriate fabrication processes that are suitable for volume manufacturing. The current techniques for the fabrication of nanoparticles either are solution based, thus requiring complex surface passivation, or have severe constraints over the choice of particle size and material. We have developed an ultrahigh vacuum system for the implementation of a complex nanosystem that is flexible and compatible with the silicon integrated circuit process, thus …


Low-Temperature Molecular Beam Epitaxy Of Gaas: A Theoretical Investigation Of Antisite Incorporation And Reflection High-Energy Diffraction Oscillations, K. Natarajan, Rama Venkat, Donald L. Dorsey May 1999

Low-Temperature Molecular Beam Epitaxy Of Gaas: A Theoretical Investigation Of Antisite Incorporation And Reflection High-Energy Diffraction Oscillations, K. Natarajan, Rama Venkat, Donald L. Dorsey

Electrical & Computer Engineering Faculty Research

Surface dynamics dominate the incorporation of charged, As+Ga, and neutral, As0Ga, antisite arsenic, and the temporal variation of reflection high-energy electron diffraction(RHEED) intensity in the low-temperature molecular beam epitaxy of (100) gallium arsenide(GaAs). A rate equation model is proposed which includes the presence and dynamics of a physisorbed arsenic (PA) layer riding the growth surface. The PA layer dictates the incorporation and concentration of As+Ga and As0Ga. Additionally, it influences the RHEED oscillations (ROs) behavior and the RO’s dependence on its coverage through its contribution to the reflected intensity. The model results for the dependence of As+Ga and As0Ga concentrations …


Gallium Desorption Behavior At Algaas/Gaas Heterointerfaces During High-Temperature Molecular Beam Epitaxy, K. Mahalingam, D. L. Dorsey, K. R. Evans, Rama Venkat Aug 1997

Gallium Desorption Behavior At Algaas/Gaas Heterointerfaces During High-Temperature Molecular Beam Epitaxy, K. Mahalingam, D. L. Dorsey, K. R. Evans, Rama Venkat

Electrical & Computer Engineering Faculty Research

A Monte Carlo simulation study is performed to investigate the Ga desorption behavior during AlGaAs-on-GaAs heterointerface formation by molecular beam epitaxy. The transients in the Ga desorption rate upon opening the Al shutter are shown to be associated with the concurrent reduction in the V/III flux ratio. Monte Carlo simulations employing a constant V/III flux ratio yield a “steplike” variation in the Ga desorption rate with the resulting interfaces closer in abruptness to the ideal AlGaAs-on-GaAs interface. Further details on the stoichiometry of the interface and its relationship with predicted Ga desorption profiles is presented.


A Stochastic Model For Crystal-Amorphous Transition In Low Temperature Molecular Beam Epitaxial Si(111), R. Venkatasubramanian, Suresh Gorantla, S. Muthuvenkatraman, Donald L. Dorsey Dec 1996

A Stochastic Model For Crystal-Amorphous Transition In Low Temperature Molecular Beam Epitaxial Si(111), R. Venkatasubramanian, Suresh Gorantla, S. Muthuvenkatraman, Donald L. Dorsey

Electrical & Computer Engineering Faculty Research

Molecular beam epitaxial Si (111) grown below a certain temperature result in amorphous structure due to the limited surface mobility of atoms in finding correct epitaxial sites. In spite of many experimental and theoretical studies, the mechanism of crystal‐amorphous transition and its dynamics related to the growth conditions are not well understood. In this article, we present a theoretical model based on the formation of stacking fault like defects as a precursor to the amorphous transition of the layer. The model is simulated based on a stochastic model approach and the results are compared to that of experiments for temperatures …


Comparison Of Time-Domain Reflectometry Performance Factors For Several Dielectric Geometries: Theory And Experiments, S. V. Maheshwarla, R. Venkatasubramanian, Robert F. Boehm Aug 1995

Comparison Of Time-Domain Reflectometry Performance Factors For Several Dielectric Geometries: Theory And Experiments, S. V. Maheshwarla, R. Venkatasubramanian, Robert F. Boehm

Electrical & Computer Engineering Faculty Research

We propose three nontraditional dielectric geometries and present an experimental and theoretical analysis and comparison of time domain reflectometry (TDR) performances for them. The traditional geometry (the probes inserted in material of essentially infinite extent) is compared to three nontraditional geometries where the probes are affixed outside of a core sample, inside of a bore, or flat on the surface of a semi-infinite solid. Our derivation relates the velocity of electromagnetic wave propagation to the complex permittivities and permeabilities of the media and the geometry for the three nontraditional configurations. Experimental results for air, styrofoam, dry sand, wet sand of …