Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 37

Full-Text Articles in Engineering

Synergistic Strategies In Sinter-Based Material Extrusion (Mex) 3d Printing Of Copper: Process Development, Product Design, Predictive Maps And Models., Kameswara Pavan Kumar Ajjarapu Dec 2023

Synergistic Strategies In Sinter-Based Material Extrusion (Mex) 3d Printing Of Copper: Process Development, Product Design, Predictive Maps And Models., Kameswara Pavan Kumar Ajjarapu

Electronic Theses and Dissertations

3D printing pure copper with high electrical conductivity and exceptional density has long been challenging. While laser-based additive manufacturing technologies suffered due to copper's highly reflective nature towards laser beams, parts printed via binder-assisted technologies failed to reach over 90% IACS (International Annealed Copper Standard), electrical conductivity. Although promising techniques such as binder jetting, filament, and pellet-based 3D printing that can print copper exist, they however still face difficulties in achieving both high sintered densities and electrical conductivity values. This is due to a lack of comprehensive understanding of property evolution from green to sintered states and the strategies that …


Investigation Of Light Management Strategies And Photochemistry Of Si/Tio2 Tandem Microwire Slurries For Solar Hydrogen Generation., Saumya Gulati May 2023

Investigation Of Light Management Strategies And Photochemistry Of Si/Tio2 Tandem Microwire Slurries For Solar Hydrogen Generation., Saumya Gulati

Electronic Theses and Dissertations

The intermittent nature of the Sun makes it difficult to use it as a primary source of electricity and often needs to be supplemented by electricity from the grid which comes from fossil fuels. This motivates the need for solar energy storage. Photoelectrochemical (PEC) water-splitting has been explored as a means to convert solar energy into hydrogen (and oxygen), which can be stored as fuel. The current method of coupling PV and electrolyzer units has been widely commercialized, however, the cost of H2 generated is far from the target of $1/kg set by the DOE under the Energy EarthShot …


Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage May 2023

Super P-Sulfur Cathodes For Quasi-Solid-State Lithium-Sulfur-Batteries., Milinda Bharatha Kalutara Koralalage

Electronic Theses and Dissertations

Lithium-Sulfur (Li-S) batteries have become a promising candidate to meet the current energy storage demand, with its natural abundance of materials, high theoretical capacity of 1672 mAhg-1, high energy density of 2600 Whkg-1, low cost and lower environmental impact. Sulfide based solid state electrolytes (SSEs) have received greater attention due to their higher ionic conductivity, compatible interface with sulfur-based cathodes, and lower grain boundary resistance. However, the interface between SSEs and cathodes has become a challenge in all solid-state Li-S batteries due to the rigidity of the participating surfaces. A hybrid electrolyte containing SSE coupled with a small amount of …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Wet Chemical Synthesis And Properties Of Argyrodite Sulfide Solid Electrolytes For Solid State Lithium Batteries., William Arnold Dec 2022

Wet Chemical Synthesis And Properties Of Argyrodite Sulfide Solid Electrolytes For Solid State Lithium Batteries., William Arnold

Electronic Theses and Dissertations

The commercialization of the lithium-ion battery (LIB) in 1991 was responsible for the explosion in portable electronic technologies that has been seen over the past 30 years. With the advent of electric vehicles and other high-powered technologies, there is tremendous demand for LIBs with higher energy density and high safety. To achieve this, new electrode materials must be explored. The obvious choice of anode material would be pure metal lithium, which has a theoretical specific capacity of 3860 mAh g-1 . Unfortunately, metal lithium anodes have not been widely commercialized due to their tendency to react violently with the …


Effects Of Sizing Agents On Mechanical Properties Of Carbon Fiber–Polymer Composites Via Fused Filament Fabrication Additive Manufacturing., Benjamin D. Mitchell May 2022

Effects Of Sizing Agents On Mechanical Properties Of Carbon Fiber–Polymer Composites Via Fused Filament Fabrication Additive Manufacturing., Benjamin D. Mitchell

Electronic Theses and Dissertations

This study demonstrated the effects of changing the sizing agent parameter during the preparation of carbon fibers on the mechanical properties of composite made with acrylonitrile butadiene styrene (ABS) as the matrix material and carbon fibers as the fiber material. Three types of sizing agents produced by Allnex were used to coat three different batches of carbon fibers that were mixed with a torque rheometer and extruded with a barrel-style melt extruder into continuous spools of 1.75 mm filament for use with commercial 3D printers. Tensile tests were conducted on the filaments and tensile bars printed from the materials. Results …


Development Of Porous Solid Acid Catalysts For Lignocellulose And Plastic Upcycling., Mohammad Shahinur Rahaman May 2022

Development Of Porous Solid Acid Catalysts For Lignocellulose And Plastic Upcycling., Mohammad Shahinur Rahaman

Electronic Theses and Dissertations

My goal is to develop chemical processes for transforming waste to solve environmental problems and enhance sustainability. Environmental problems such as pollution and massive amounts of waste are the main drivers that stimulate my research ideas. I focused on creating novel, efficient catalytic processes for converting polymeric waste "feedstocks" into high-value chemicals by integrating my expertise in catalysis, materials science, and synthetic chemistry to develop porous solid catalytic materials. During my Ph.D., I focused on two polymeric feedstocks, lignocellulose, and discarded plastic.

Early in my Ph.D. journey, I focused on catalytic upcycling of lignocellulose. Lignocellulosic biomass is cost-effective, abundant, and …


Properties Of 25cr7ni Stainless Steel Fabricated Through Laser-Powder Bed Fusion., Arulselvan Arumugham Akilan May 2022

Properties Of 25cr7ni Stainless Steel Fabricated Through Laser-Powder Bed Fusion., Arulselvan Arumugham Akilan

Electronic Theses and Dissertations

Stainless steel is a low carbon high alloyed system with higher concentrations of Cr& Ni, which impart high corrosion resistance to them. Alloys with approximately 25% Cr & 7% Ni in their chemical composition are commercially referred to as ‘Super Duplex Stainless Steel’. They have a unique phase composition of approximately 50% ferrite & 50% austenite, yielding a robust combination of high mechanical strength & corrosion resistance. They find extensive interest & application in the fields which demand a longer service life under intense mechanical / corrosive environment such as offshore oil rigs & pipelines in nuclear power plants. Traditional …


Structural, Charge Transport, Gas Sensing, Magnetic, Pseudocapacitive, And Electrocatalytic Properties Of Perovskite Oxides., Surendra Bahadur Karki May 2022

Structural, Charge Transport, Gas Sensing, Magnetic, Pseudocapacitive, And Electrocatalytic Properties Of Perovskite Oxides., Surendra Bahadur Karki

Electronic Theses and Dissertations

Perovskites are functional materials with the general formula ABO3 (A = alkali, alkaline earth or lanthanoid cations and B = transition metal or main group cations). These materials are marked by a variety of crystal structures and interesting properties such as colossal magnetoresistance, ferroelectricity, multiferroicity, superconductivity, pseudocapacitance, gas sensing, charge transport, and electrocatalytic properties. The formula of perovskite can be written as AA’BB’O6, when there is ordering between two cations over A and B-sites. Such compounds are called double perovskite oxides. Some amount of oxygen could be lost from crystal structure without decomposition of the phase. Such …


Synthesis, Crystal Structure And Ionic Conductivity Of Ruddlesden-Popper Oxide Materials: Effects Of Ionic Radii And Defects On Lithium-Ionic Conductivity., Selorm Joy Fanah Dec 2021

Synthesis, Crystal Structure And Ionic Conductivity Of Ruddlesden-Popper Oxide Materials: Effects Of Ionic Radii And Defects On Lithium-Ionic Conductivity., Selorm Joy Fanah

Electronic Theses and Dissertations

Layered perovskite oxides of the Ruddlesden-Popper (RP) type structure can be good lithium-ion conductors for solid electrolyte applications in all-solid-state batteries, due to the large gap separating octahedral layers which can be useful pathways for Li-ion conduction. However, little work has been done on their lithium-ion transport properties in these materials despite their interesting structural properties. This work highlights the synthesis and study of the ionic conductivities in a series of n = 2 and 3 Ruddlesden-Popper oxides, as part of an ongoing investigation in search of alternative solid electrolyte materials. Several different strategies were employed for the enhancement of …


An Investigation Into Energy-Material Properties Interaction In Additive Manufacturing Of Polymers., Pu Han Dec 2021

An Investigation Into Energy-Material Properties Interaction In Additive Manufacturing Of Polymers., Pu Han

Electronic Theses and Dissertations

Additive manufacturing (AM), known as three-dimensional (3D) printing, is a fabrication process to build 3D objects layer by layer based on computer aided design (CAD) model or digital 3D model. Fused filament fabrication (FFF) has become a preferred method for additive manufacturing due to its cost-effectiveness and flexibility. However, the parts built using FFF process suffer from lower mechanical strength compared to that fabricated using traditional method and rough surface finish. With this motivation, this dissertation aims to develop and implement a novel in-process laser assisted technique on FFF to heal the microstructure of FFF built objects by enhancing reptation …


Rapid Annealing Of Perovskite Solar Cell Thin Film Materials Through Intense Pulse Light., Amir Hossein Ghahremani Aug 2021

Rapid Annealing Of Perovskite Solar Cell Thin Film Materials Through Intense Pulse Light., Amir Hossein Ghahremani

Electronic Theses and Dissertations

Perovskite solar cells (PSCs) have garnered a great attention due to their rapid efficiency improvement using cheap and solution processable materials that can be adapted for scalable high-speed automated manufacturing. Thin film perovskite photovoltaics (PVs) are typically fabricated in an inert environment, such as nitrogen glovebox, through a set of deposition and annealing steps, each playing a significant role on the power conversion efficiency (PCE), reproducibility, and stability of devices. However, atmospheric processing of PSCs would achieve lucrative commercialization. Therefore, it is necessary to utilize materials and methods that enable successful fabrication of efficient PSCs in the ambient environment. The …


Mixed Metal Oxide Nanowires Via Solid State Alloying., Veerendra Atla Aug 2021

Mixed Metal Oxide Nanowires Via Solid State Alloying., Veerendra Atla

Electronic Theses and Dissertations

Mixed metal oxide materials with composition control find applications in energy conversion and storage processes such as heterogenous catalysis, photoelectrochemical catalysis, electrocatalysis, thermal catalysis, and lithium-ion batteries. Mixed metal oxides and/or complex oxides with composition control and in one-dimensional form as nanowires could be interesting to various catalysis applications due to control on single crystal surfaces, active sites, acidity versus basicity site density, and oxygen vacancies. The major challenge is to synthesize mixed metal oxide nanowires beyond binary oxides with composition control. In this dissertation, solid state alloying of binary oxide nanowires with solid and liquid precursors is studied to …


Modeling And Analysis For Unit Cell Size, Material Anisotropy And Material Imperfection Effects Of Cellular Structures Fabricated By Powder Bed Fusion Additive Manufacturing., Yan Wu Dec 2020

Modeling And Analysis For Unit Cell Size, Material Anisotropy And Material Imperfection Effects Of Cellular Structures Fabricated By Powder Bed Fusion Additive Manufacturing., Yan Wu

Electronic Theses and Dissertations

Cellular structures are networks of interconnected struts or walls with porosities and are widely found in many natural load-bearing structures such as plants and bones. Cellular structures offer unique functional characteristics such as high stiffness to weight ratio, tailorable heat transfer coefficient, and enhanced mechanical energy absorption, which makes them highly attractive in various engineering disciplines such as biomedical implants, electrodes, heat exchangers, and lightweight structures. There exists an abundance of literatures that have investigated various mechanical properties of various cellular structures such as Poisson’s ratio, elastic modulus, ultimate strength, yield strength, and failure characteristics. Based on the classic cellular …


Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates Aug 2020

Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates

Electronic Theses and Dissertations

As the interest and implementation of renewable energy accelerates, so does that of grid energy storage. It is widely believed that a cost-effective energy storage technology will bring about the proliferation of renewable energy. Redox flow battery (RFB) technology represents a promising solution to cost-effective grid energy storage. Compared to other technologies, RFBs have a long lifetime, high efficiency, are non-flammable, significantly reduce cost, and separately scale power and energy. The separation of power and energy enables increased energy capacity by simply adding electrolyte volume. Of the challenges facing RFB technology, one readily apparent is the cost of the active …


Materials-Processing Relationships For Metal Fused Filament Fabrication Of Ti-6al-4v Alloy., Paramjot Singh May 2020

Materials-Processing Relationships For Metal Fused Filament Fabrication Of Ti-6al-4v Alloy., Paramjot Singh

Electronic Theses and Dissertations

Additive manufacturing (AM) is at the mainstream to cater the needs for rapid tooling and small-scale part production. The metal AM of complex geometries is widely accepted and promoted in the industry. While several metal AM technologies exist and are matured to a level where expectation in terms of design and properties are possible to realize. But the metal AM suffers from the heavy expense to acquire equipment, isotropic property challenges, and potential hazards to work with loose reactive metal powder. With this motivation, the dissertation aims to develop the fundamental aspects to print metal parts with bound Ti-6Al-4V powder …


Selective Laser Melting 17-4 Ph Stainless Steel And The Effect Of Varied Thermal Treatments On Fatigue Behavior., Sean Daniel Dobson May 2020

Selective Laser Melting 17-4 Ph Stainless Steel And The Effect Of Varied Thermal Treatments On Fatigue Behavior., Sean Daniel Dobson

Electronic Theses and Dissertations

Fatigue failure is the leading source of loss in industry. In order for new means of manufacturing to move towards mainstream use a complete understanding of material and mechanical behavior must be gained. This endeavor seeks to aide in that task by observing the fatigue behavior of selective laser melting (SLM) additive manufacturing (AM) specimens and the effect of differing thermal treatment conditions for an optimized AM process. Stainless steel 17-4 PH specimens were fabricated using SLM AM and thermally treated to three conditions: as-built, solutionized and hardened, and direct hardened. These specimens were characterized for material (powder quality, density, …


Triple-Junction Solar Cells : In Parallel., Levi C Mays Aug 2019

Triple-Junction Solar Cells : In Parallel., Levi C Mays

Electronic Theses and Dissertations

This paper looks into the current inefficiency of solar cells and attempts a few alternative solar cell structures in order to provide a more effective source of renewable energy. Currently, multi-junction solar cells are being developed to capture the sun’s light more efficiently. One of the ideas in this paper is to add a window to see if the addition of such a layer into a junction will increase the voltage while maintaining nearly the same current output. Central to this paper is the rearranging of the conducting layers of the multi-junction cell so that the junctions can be connected …


Plasma Oxidation Of Liquid Precursors For Complex Metal Oxides., Babajide Patrick Ajayi May 2019

Plasma Oxidation Of Liquid Precursors For Complex Metal Oxides., Babajide Patrick Ajayi

Electronic Theses and Dissertations

Clean energy production and storage are two of the most significant challenges in the 21st century currently limited by the discovery and development of new and advanced materials. Complex oxides and alloys made using earth-abundant elements will play a crucial role in technology development moving forward, however, current preparation techniques are limited by their inability to produce complex oxides and alloys with precise composition control at fast timescales. A concept was proposed to produce mixed metal oxides with composition control through the oxidation of liquid precursors via plasma oxidation. It was hypothesized that the oxidation process can be completed …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath Dec 2018

Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath

Electronic Theses and Dissertations

Laser-powder bed fusion (L-PBF) is an additive manufacturing technique for fabricating metal components with complex design and customized features. However, only a limited number of materials have been widely studied using L-PBF. AISI 420 stainless steel, an alloy with a useful combination of high strength, hardness, and corrosion resistance, is an example of one such material where few L-PBF investigations have emerged to date. In this dissertation, L-PBF experiments were conducted using 420 stainless steel powders to understand the effects of chemical composition, particle size distribution and processing parameters on ensuing physical, mechanical and corrosion properties and microstructure in comparison …


Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the …


Microstructure And Mechanical Properties Of Selective Laser Melted Superalloy Inconel 625., Md Ashabul Anam Aug 2018

Microstructure And Mechanical Properties Of Selective Laser Melted Superalloy Inconel 625., Md Ashabul Anam

Electronic Theses and Dissertations

Selective Laser Melting (SLM), a powder based Additive Manufacturing (AM) process, has gained considerable attention in the aerospace, biomedical and automotive industries due to its many potential benefits, such as, capability of fabricating complex three-dimensional components, shortened design to product time, reduction in process steps, component mass reduction and material flexibility. This process uses metallic powder and is capable of fabricating complex structures with excellent microstructure which make SLM not only an improvement over other manufacturing processes but also innovative material processing technology. Inconel 625, a nickel-based super alloy is widely popular in aerospace, chemical and nuclear industries. This alloy …


Modeling And Validations Of Control Parameters For Material Extrusion-Based Additive Manufacturing Of Thixotropic Aluminum Alloys., Lars Herhold Aug 2018

Modeling And Validations Of Control Parameters For Material Extrusion-Based Additive Manufacturing Of Thixotropic Aluminum Alloys., Lars Herhold

Electronic Theses and Dissertations

Additive Manufacturing (AM) with metals has been accomplished mainly through powder bed fusion processes. Initial experiments and simulations using Material Extrusion Additive Manufacturing (MEAM) have been performed by various researchers especially using low melting alloys. Recently Stratasys Inc. submitted a patent application for the use of their Material Extrusion technology also called Fused Deposition Modeling (FDM) where they describe the process using thixotropic semi-solid alloys. Currently this process using semi-solid, engineering type alloys such as A356 or THIXALLOY 540 aluminum have not been researched to evaluate the control parameters. This research combines the in-depth knowledge of applying thixotropic semi-solid aluminum …


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed …


Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli May 2018

Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli

Electronic Theses and Dissertations

Metal Additive Manufacturing (AM) is increasingly being used to make functional components. One of the barriers for AM components to become mainstream is the difficulty to certify them. AM components can have widely different properties based on process parameters. Improving an AM processes requires an understanding of process-structure-property correlations, which can be gathered in-situ and post-process through nondestructive and destructive methods. In this study, two metal AM processes were studied, the first is Ultrasonic Additive Manufacturing (UAM) and the second is Laser Powder Bed Fusion (L-PBF). The typical problems with UAM components are inter-layer and inter-track defects. To improve the …


Reactive Lamination Of Perovskite Solar Cells., Lyndie Burns May 2018

Reactive Lamination Of Perovskite Solar Cells., Lyndie Burns

Electronic Theses and Dissertations

Due to the growing demand for energy internationally and the environmental impact of other conventional energy technologies, solar power has been a growing area in the energy landscape. Perovskite research has increased substantially because of the high power conversion efficiencies, up to 22%, with many recent advances in the use of these organic-inorganic hybrid perovskites for photovoltaic cells. However, to bring perovskite solar cells into the industrial world, the overall cost of the manufacturing of the solar cell must be improved to compete with other well-developed photovoltaic technologies. Here is presented an alternative perovskite deposition method for methylammonium lead halide …


Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer Apr 2018

Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer

Electronic Theses and Dissertations

This thesis is an examination of two material systems derived from polylactic acid (PLA) and polyethylene glycol (PEG). PLA is a polymer commonly sourced from renewable sources such as starches and sugars. It is a relatively strong, biodegradable polymer, making it ideal for use in the body. Even though it has a relative high strength, PLA is also brittle leading to the use of plasticizers to increase flexibility. One such plasticizer is PEG, which is a material that can exist at room temperature as either a thin liquid, or a hard waxy solid depending on the molecular weight. The first …


Design, Analysis, And Application Of A Cellular Material/Structure Model For Metal Based Additive Manufacturing Process., Shanshan Zhang Dec 2017

Design, Analysis, And Application Of A Cellular Material/Structure Model For Metal Based Additive Manufacturing Process., Shanshan Zhang

Electronic Theses and Dissertations

Powder bed fusion additive manufacturing (PBF-AM) has been broadly utilized to fabricate lightweight cellular structures, which have promising potentials in many engineering applications such as biomedical prosthesis, aerospace, and architectural structures due to their high performance-to-weight ratios and unique property tailorabilities. To date, there is still a lack of adequate understanding of how the cellular materials are influenced by both the geometry designs and process parameters, which significantly hinders the effective design of cellular structures fabricated by PBF-AM for critical applications. This study aims to demonstrate a cellular structure design methodology that integrates geometrical design and process-material property designs. Utilizing …


Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin Dec 2017

Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin

Electronic Theses and Dissertations

Gas analysis is an important part of our world and gas sensing technology is becoming more essential for various aspects of our life. A novel approach for gas mixture analysis by using portable gas chromatography in combination with an array of highly integrated and selective metal oxide (MOX) sensors has been studied. We developed a system with small size (7 x 13 x 16 inches), low power consumption (~10 W) and absence of special carrier gases designed for portable field analysis (assuming apriori calibration). Low ppb and even sub-ppb level of detection for some VOCs was achieved during the analysis …