Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

San Jose State University

Mechanical properties

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Enhancement Of Asphalt Performance By Graphene-Based Bitumen Nanocomposites, Sara Moghtadernejad, Ehsan Barjasteh, Ren Nagata, Haia Malabeh Jun 2021

Enhancement Of Asphalt Performance By Graphene-Based Bitumen Nanocomposites, Sara Moghtadernejad, Ehsan Barjasteh, Ren Nagata, Haia Malabeh

Mineta Transportation Institute

As the State of California continues to grow, demand for enhanced infrastructure such as roadways and highways escalates. In view of the current average highway lifespan of 15–20 years, the improvement of asphalt binders leads to material sustainability by decreasing required maintenance and increasing the lifespan of roadways. In the present investigation, enhancement of asphalt binder properties was achieved by different methods of mixing varying compositions of graphene nanoparticles with an SBS polymer and asphalt binder. Additionally, experimental evaluation and comparison of the rheological and mechanical properties of each specimen is presented. Graphene nanoparticles have attracted great curiosity in the …


Mechanical Characterization Of Parts Produced By Ceramic On‐Demand Extrusion Process, Amir Ghazanfari, Wenbin Li, Ming Leu, Gregory Hilmas Jan 2017

Mechanical Characterization Of Parts Produced By Ceramic On‐Demand Extrusion Process, Amir Ghazanfari, Wenbin Li, Ming Leu, Gregory Hilmas

Faculty Publications, Mechanical Engineering

Ceramic On‐Demand Extrusion (CODE) is an additive manufacturing process recently developed to produce dense three‐dimensional ceramic components. In this paper, the properties of parts produced using this freeform extrusion fabrication process are described. High solids loading (~60 vol%) alumina paste was prepared to fabricate parts and standard test methods were employed to examine their properties including the density, strength, Young's modulus, Weibull modulus, toughness, and hardness. Microstructural evaluation was also performed to measure the grain size and critical flaw size. The results indicate that the properties of parts surpass most other ceramic additive manufacturing processes and match conventional fabrication techniques.