Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Missouri University of Science and Technology

Doctoral Dissertations

Theses/Dissertations

Energy Storage

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Studying The Effects Of New Additive Materials For The Improvement Of The Capacity And Cycle Life Performance Of The Lead-Acid Battery, Julian Kosacki Jan 2021

Studying The Effects Of New Additive Materials For The Improvement Of The Capacity And Cycle Life Performance Of The Lead-Acid Battery, Julian Kosacki

Doctoral Dissertations

"Lead-acid batteries are an established technology with nearly 99% recyclability; however, lead-acid batteries produce only 40% of their theoretical capacity due to poor active mass utilization and PbSO4 pore blockage, and the longevity of the batteries is hampered by secondary reactions during the cycle life such as corrosion and gassing.

Lead-acid batteries were investigated and improved through several different approaches: an alternative electrolyte to mitigate secondary reactions, graphite additives to improve positive active mass (PAM) utilization, and dispersant additives to help the industrial pasting process.

The thermodynamics and chemical reactions of a commercial electrolyte replacement called TydrolyteTM were investigated …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr Jan 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr

Doctoral Dissertations

"Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4 and NaAlH4 indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …