Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & …


Quantitative Phase-Field Modeling Of Crack Propagation In Multi-Phase Materials, Arezoo Emdadi Jan 2018

Quantitative Phase-Field Modeling Of Crack Propagation In Multi-Phase Materials, Arezoo Emdadi

Doctoral Dissertations

”Research presented in this dissertation is focused on developing and validating a computational framework for study of crack propagation in polycrystalline composite ceramics capable of designing micro-architectures of phases to improve fracture toughness and damage tolerance of ZrB2-based ultra-high temperature ceramics (UHTCs). A quantitative phase-field model based on the regularized formulation of Griffith’s theory is presented for crack propagation in homogenous and heterogeneous brittle materials. This model utilizes correction parameters in the total free energy functional and mechanical equilibrium equation within the crack diffusive area to ensure that the maximum stress in front of the crack tip is …


Mitigation Of Environmental Hazards Of Sulfide Mineral Flotation With An Insight Into Froth Stability And Flotation Performance, Muhammad Badar Hayat Jan 2018

Mitigation Of Environmental Hazards Of Sulfide Mineral Flotation With An Insight Into Froth Stability And Flotation Performance, Muhammad Badar Hayat

Doctoral Dissertations

"Today's major challenges facing the flotation of sulfide minerals involve constant variability in the ore composition; environmental concerns; water scarcity and inefficient plant performance. The present work addresses these challenges faced by the flotation process of complex sulfide ore of Mississippi Valley type with an insight into the froth stability and the flotation performance. The first project in this study was aimed at finding the optimum conditions for the bulk flotation of galena (PbS) and chalcopyrite (CuFeS₂) through Response Surface Methodology (RSM). In the second project, an attempt was made to replace toxic sodium cyanide (NaCN) with the biodegradable chitosan …


Direct Printing Of Single-Crystal Silicon By Microscale Nanoparticle Printing And Confined Laser Melting And Crystallization, Wan Shou Jan 2018

Direct Printing Of Single-Crystal Silicon By Microscale Nanoparticle Printing And Confined Laser Melting And Crystallization, Wan Shou

Doctoral Dissertations

"The transport and interfacial phenomena in laser melting and crystallization of silicon in micro-/nano-scale confinement lacks sufficient understanding. Uncovering the underlying mechanisms, and hence harness the melting and crystallization processes can help the formation of controllable single-crystal structures or patterns. In this dissertation, a molecular dynamics (MD) simulation was conducted to calculate the interfacial free energy of the silicon system in contact with flat and structured walls. Then the calculated interfacial energies were employed to predict the nucleation mechanisms in a slab of liquid silicon confined by two walls and compared with MD simulation results. Further, in combination with a …


Soy-Based Polyurethane Foam For Insulation And Structural Applications, Gurjot S. Dhaliwal Jan 2018

Soy-Based Polyurethane Foam For Insulation And Structural Applications, Gurjot S. Dhaliwal

Doctoral Dissertations

"Polyurethane (PU) foams are widely used as insulation materials due to their high insulation properties and low cost compared to conventional materials such as styrene and mineral wool. PU foams are traditionally fabricated with petroleum-based precursors. However, high crude price and higher carbon footprint has lead interest of researchers to synthesis PU foams using plant-based raw materials, that are inexpensive and renewable. In this dissertation, PU foams were fabricated using soy-based polyol and its thermal and mechanical properties were investigated. In the first part, of PU foam samples with different formulations were fabricated using soy-based polyol HB230, and varying amounts …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr Jan 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr

Doctoral Dissertations

"Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4 and NaAlH4 indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


Micro-Slotting Technique For Measurement Of Local Residual Stress In Metallic Materials, Elizabeth Anne Burns Jan 2018

Micro-Slotting Technique For Measurement Of Local Residual Stress In Metallic Materials, Elizabeth Anne Burns

Doctoral Dissertations

"Micro-slotting, a micro-scale relaxation residual stress measurement technique, has been shown in recent years to be a reliable method for measuring local residual stresses in metallic materials. This technique employs an SEM-focused ion beam system for milling and imaging, digital image correlation software to track displacements due to residual stress relaxation, and finite element analysis for interpolation of the original local stress state. In this research, a micro-slotting procedure was established using finite element models and was used to obtain sub-surface residual stress measurements on machined and shot peened planar Ti-6Al-4V samples. These measurements were compared to macro-scale XRD residual …


Multi-Scale Investigation Of Microstructure, Fiber-Matrix Bond, And Mechanical Properties Of Ultra-High Performance Concrete, Zemei Wu Jan 2018

Multi-Scale Investigation Of Microstructure, Fiber-Matrix Bond, And Mechanical Properties Of Ultra-High Performance Concrete, Zemei Wu

Doctoral Dissertations

"The main objective of this study is to provide new insights into enhancing fiber-matrix bond and mechanical properties of ultra-high performance concrete (UHPC). Three main strategies were investigated: 1) use of supplementary cementitious materials; 2) use of nano-particles; and 3) use of deformed fibers. A multi-scale investigation involving the evaluation of non-fibrous UHPC mortar phase (matrix), fiber-matrix interface phase, and then UHPC composite material was undertaken to determine microstructural characteristics, fiber bond to matrix, and key mechanical properties of the UHPC matrix and UHPC. Test results indicate that the incorporation of 10%-20% silica fume effectively improved the fiber-matrix bond and …


Electrodeposited Epitaxial Cobalt Oxides And Copper Metal, Caleb M. Hull Jan 2018

Electrodeposited Epitaxial Cobalt Oxides And Copper Metal, Caleb M. Hull

Doctoral Dissertations

"Electrochemical deposition methods are presented for the deposition of Co(OH)2 and Cu metal. Paper I shows the deposition of β-Co(OH)2 on Ti through electrochemical reduction of [Co(en)3]3+ to [Co(en)3]2+ in 2M NaOH. The catalytic properties of the deposited Co(OH)2 towards water oxidation is found comparable to Co3O4, with the surface of the Co(OH)2 converting to CoOOH during the reaction. Paper II gives the conditions suitable for epitaxial growth of Co(OH)2 on Au(100), Au(110), and Au(111) following the same reduction mechanism as described in Paper I. …


High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan Jan 2018

High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan

Doctoral Dissertations

"High performance polymer composites possess high strength-to-weight ratio, corrosion resistance, and have design flexibility. Carbon/epoxy composites are commonly used aerospace materials. Bismaleimide based composites are used as a replacement for epoxy systems at higher service temperatures. Aerospace composites are usually manufactured, under high pressure, in an autoclave which requires high capital investments and operating costs. In contrast, out-of-autoclave manufacturing, specifically vacuum-bag-only prepreg process, is capable of producing low cost and high performance composites. In the current study, out-of-autoclave processing of high temperature carbon/bismaleimide composites was evaluated. The cure and process parameters were optimized. The properties of out-of-autoclave cured laminates compared …


Chemistry, Design, And Processing Of Two-Stage Trip Steel, Daniel M. Field Jan 2018

Chemistry, Design, And Processing Of Two-Stage Trip Steel, Daniel M. Field

Doctoral Dissertations

"A regular solution model was developed to calculate the chemical driving force for α-martensite formation, ΔGλ→ αChem. A model for the strain energy, ΔGλ→αstr, was formulated utilizing the Young’s modulus (E), lattice misfit squared (δ²), and molar volume (Ω) which opposed the chemical driving force for α-martensite formation. The MαS was determined at a temperature at which ΔGλ→αChem + ΔGλ→αstr = 0. In conjunction with a previously developed ε-martensite model, a means of predicting the volume fraction of λ-austenite was determined; and it was shown that for values …