Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Boise State University

2020

BRC

Articles 1 - 3 of 3

Full-Text Articles in Engineering

High-Performance Flexible Bismuth Telluride Thin Film From Solution Processed Colloidal Nanoplates, Madhusudan Kongara, Tony Varghese, Karthik Chinnathambi, Jesse Schimpf, Josh Eixenberger, Paul H. Davis, Yaqiao Wu, David Estrada Nov 2020

High-Performance Flexible Bismuth Telluride Thin Film From Solution Processed Colloidal Nanoplates, Madhusudan Kongara, Tony Varghese, Karthik Chinnathambi, Jesse Schimpf, Josh Eixenberger, Paul H. Davis, Yaqiao Wu, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Thermoelectric generators are an environmentally friendly and reliable solid‐state energy conversion technology. Flexible and low‐cost thermoelectric generators are especially suited to power flexible electronics and sensors using body heat or other ambient heat sources. Bismuth telluride (Bi2Te3) based thermoelectric materials exhibit their best performance near room temperature making them an ideal candidate to power wearable electronics and sensors using body heat. In this report, Bi2Te3 thin films are deposited on a flexible polyimide substrate using low‐cost and scalable manufacturing methods. The synthesized Bi2Te3 nanocrystals have a thickness of 35 ± …


Mechanochemical Conversion Kinetics Of Red To Black Phosphorus And Scaling Parameters For High Volume Synthesis, Samuel V. Pedersen, Florent Muramutsa, Joshua D. Wood, Chad Husko, David Estrada, Brian J. Jaques Oct 2020

Mechanochemical Conversion Kinetics Of Red To Black Phosphorus And Scaling Parameters For High Volume Synthesis, Samuel V. Pedersen, Florent Muramutsa, Joshua D. Wood, Chad Husko, David Estrada, Brian J. Jaques

Materials Science and Engineering Faculty Publications and Presentations

Adopting black phosphorus (BP) as a material in electronic and optoelectronic device manufacturing requires the development and understanding of a large-scale synthesis technique. To that end, high-energy planetary ball milling is demonstrated as a scalable synthesis route, and the mechanisms and conversion kinetics of the BP phase transformation are investigated. During the milling process, media collisions rapidly compress amorphous red phosphorus (RP) into crystalline, orthorhombic BP flakes, resulting in a conversion yield of ≈90% for ≈5 g of bulk BP powder. Milling conversion kinetics, monitored via ex situ x-ray diffraction, manifest a sigmoidal behavior best described by the Avrami rate …


A Review Of Inkjet Printed Graphene And Carbon Nanotubes Based Gas Sensors, Twinkle Pandhi, Ashita Chandnani, Harish Subbaraman, David Estrada Oct 2020

A Review Of Inkjet Printed Graphene And Carbon Nanotubes Based Gas Sensors, Twinkle Pandhi, Ashita Chandnani, Harish Subbaraman, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Graphene and carbon nanotube (CNT)-based gas/vapor sensors have gained much traction for numerous applications over the last decade due to their excellent sensing performance at ambient conditions. Inkjet printing various forms of graphene (reduced graphene oxide or modified graphene) and CNT (single-wall nanotubes (SWNTs) or multiwall nanotubes (MWNTs)) nanomaterials allows fabrication onto flexible substrates which enable gas sensing applications in flexible electronics. This review focuses on their recent developments and provides an overview of the state-of-the-art in inkjet printing of graphene and CNT based sensors targeting gases, such as NO2, Cl2, CO2, NH3 …