Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Boise State University

Materials Science and Engineering Faculty Publications and Presentations

Aerosol jet printing

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Formulation And Aerosol Jet Printing Of Nickel Nanoparticle Ink For High-Temperature Microelectronic Applications And Patterned Graphene Growth, Nicholas Mckibben, Michael Curtis, Olivia Maryon, Mone’T Sawyer, Maryna Lazouskaya, Josh Eixenberger, Zhangxian Deng, David Estrada Feb 2024

Formulation And Aerosol Jet Printing Of Nickel Nanoparticle Ink For High-Temperature Microelectronic Applications And Patterned Graphene Growth, Nicholas Mckibben, Michael Curtis, Olivia Maryon, Mone’T Sawyer, Maryna Lazouskaya, Josh Eixenberger, Zhangxian Deng, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution. Nickel is an attractive high-temperature packaging material due to its electrical conductivity, magnetism, and corrosion resistance. In this work, we synthesized nickel nanoparticles and formulated an AJP ink, which was printed on various material surfaces. Thermal sintering experiments were performed on the samples to explore the …


Additive Manufacturing Of Miniaturized Peak Temperature Monitors For In-Pile Applications, Kiyo T. Fujimoto, Yaqiao Wu, David Estrada Nov 2021

Additive Manufacturing Of Miniaturized Peak Temperature Monitors For In-Pile Applications, Kiyo T. Fujimoto, Yaqiao Wu, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Passive monitoring techniques have been used for peak temperature measurements during irradiation tests by exploiting the melting point of well-characterized materials. Recent efforts to expand the capabilities of such peak temperature detection instrumentation include the development and testing of additively manufactured (AM) melt wires. In an effort to demonstrate and benchmark the performance and reliability of AM melt wires, we conducted a study to compare prototypical standard melt wires to an AM melt wire capsule, composed of printed aluminum, zinc, and tin melt wires. The lowest melting-point material used was Sn, with a melting point of approximately 230 °C, Zn …


High-Performance Flexible Bismuth Telluride Thin Film From Solution Processed Colloidal Nanoplates, Madhusudan Kongara, Tony Varghese, Karthik Chinnathambi, Jesse Schimpf, Josh Eixenberger, Paul H. Davis, Yaqiao Wu, David Estrada Nov 2020

High-Performance Flexible Bismuth Telluride Thin Film From Solution Processed Colloidal Nanoplates, Madhusudan Kongara, Tony Varghese, Karthik Chinnathambi, Jesse Schimpf, Josh Eixenberger, Paul H. Davis, Yaqiao Wu, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Thermoelectric generators are an environmentally friendly and reliable solid‐state energy conversion technology. Flexible and low‐cost thermoelectric generators are especially suited to power flexible electronics and sensors using body heat or other ambient heat sources. Bismuth telluride (Bi2Te3) based thermoelectric materials exhibit their best performance near room temperature making them an ideal candidate to power wearable electronics and sensors using body heat. In this report, Bi2Te3 thin films are deposited on a flexible polyimide substrate using low‐cost and scalable manufacturing methods. The synthesized Bi2Te3 nanocrystals have a thickness of 35 ± …