Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Air Force Institute of Technology

Composite materials

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Modeling Hybrid Composites Using Tsai-Wu And Hashin Failure Criterion, Candice R. Roberts Mar 2020

Modeling Hybrid Composites Using Tsai-Wu And Hashin Failure Criterion, Candice R. Roberts

Theses and Dissertations

Hybrid composites require further study and testing for future use in various fields. This study focuses on simulating a Hybrid Composite using IM7-977-3 laminae with steel foils in Abaqus under bolt loading by using Hashin and Tsai-Wu failure criterion. Initial simulations contain only the IM7-977-3 composite with cohesive layers. Foil samples were then tested for accurate material properties from which the simulations were then updated to include steel foils. The two models show that Tsai-Wu failure criterion, while great for anisotropic material in tension, does not prove accuracy around the hole of the composite material which is in compression. Hashin …


Fatigue Behavior Of Im7/Bmi 5250-4 Composite At Room And Elevated Temperatures, James T. Tipton Mar 2015

Fatigue Behavior Of Im7/Bmi 5250-4 Composite At Room And Elevated Temperatures, James T. Tipton

Theses and Dissertations

The tension-tension fatigue and tension-compression fatigue behaviors of the IM7/BMI 5250-4 composite were investigated. The tension-tension fatigue of the composite with 0/90 and ±45 fiber orientations was studied at 23, 170, and 190°C. The tension-compression fatigue of the composite with 0/90 fiber orientation was examined at 23°C. The tensile and compressive properties of the composite were also evaluated at room and elevated temperatures for both 0/90 and ±45 fiber orientations. Elevated temperature had little effect on the tensile properties of the 0/90 fiber orientation, but strongly influenced the ±45 tensile properties as well as the compressive properties of both fiber …


Structural Health Monitoring Of M1114 High Mobility Multipurpose Wheeled Vehicle Armor System, Frank T. Sha Mar 2012

Structural Health Monitoring Of M1114 High Mobility Multipurpose Wheeled Vehicle Armor System, Frank T. Sha

Theses and Dissertations

The M1114 High Mobility Multipurpose Wheeled Vehicle (HMMWV) has been the workhorse vehicle of the U.S. Armed Forces in Afghanistan and Iraq. Donald Rumsfeld, Secretary of Defense, was faced with massive public criticism in 2004 for not equipping our military personnel in Afghanistan and Iraq with M1114s that had the proper ballistic armor. In May 2004, a $618M Senate Bill was passed to increase the production level of HMMWVs and improve their ballistic protection capabilities while minimizing additional weight. While the military is taking advantage of using composite armor on the HMMWV, it does not have a rigorous method to …


Creep Behavior In Interlaminar Shear Of A Cvi Sic/Sic Composite At Elevated Temperatures In Air And Steam, Matthew T. Pope Mar 2012

Creep Behavior In Interlaminar Shear Of A Cvi Sic/Sic Composite At Elevated Temperatures In Air And Steam, Matthew T. Pope

Theses and Dissertations

This research investigated the interlaminar shear performance of a SiC/SiC ceramic matrix composite. The interlaminar shear performance was observed in compression of double notched specimens (DNS) at 1200°C in both laboratory air and in steam. Compression to failure tests determined the as-processed interlaminar shear strength and interlaminar shear creep tests were conducted with stresses ranging from -22 MPa to -16 MPa. Primary and secondary creep regimes were observed in all creep tests. The specimens tested in creep at -16 MPa in air achieved run-out, defined as 100 hours at creep stress. The residual strength decreased slightly after 100 h of …


Nondestructive Evaluation Of Aircraft Composites Using Terahertz Time Domain Spectroscopy, Christopher D. Stoik Dec 2008

Nondestructive Evaluation Of Aircraft Composites Using Terahertz Time Domain Spectroscopy, Christopher D. Stoik

Theses and Dissertations

Terahertz (THz) time domain spectroscopy (TDS) was assessed as a nondestructive evaluation technique for aircraft composites. Material properties of glass fiber composite were measured using both transmission and reflection configuration. The interaction of THz with a glass fiber composite was then analyzed, including the effects of scattering, absorption, and the index of refraction, as well as effective medium approximations. THz TDS, in both transmission and reflection configuration, was used to study composite damage, including voids, delaminations, mechanical damage, and heat damage. Measurement of the material properties on samples with localized heat damage showed that burning did not change the refractive …


Analysis Of Multi-Layered Materials Under High Velocity Impact Using Cth, Jason K. Lee Mar 2008

Analysis Of Multi-Layered Materials Under High Velocity Impact Using Cth, Jason K. Lee

Theses and Dissertations

Multi-layer armor containing ceramic and metallic layers has become more common in the past two decades. Typically, ceramics have high compressive strength which combined with their low density make them highly desirable for armor applications. This research effort numerically simulates high velocity impact of cylindrical projectiles on multi-layer metallic and ceramic targets of finite thickness. The impact of the projectile occurs normal to the surface of the target. The projectiles used are made of either S7 tool steel or tungsten. The targets consist of either rolled homogeneous armor, 4340 steel and boron carbide ceramic or rolled homogeneous armor and boron …


Effects Of Environment On Creep Behavior Of Nextel 720/Alumina-Mullite Ceramic Composite At 1200°C, Christopher L. Genelin Mar 2008

Effects Of Environment On Creep Behavior Of Nextel 720/Alumina-Mullite Ceramic Composite At 1200°C, Christopher L. Genelin

Theses and Dissertations

The creep behavior of an oxide-oxide ceramic matrix composite (CMC) was investigated at 1200°C in laboratory air, in steam and in argon. The composite consisted of a porous alumina-mullite matrix reinforced with laminated, woven mullite/alumina (Nextel/720) fibers. The composite had no fiber coating and relied on its porous alumina/mullite matrix for flaw tolerance. Tensile stress-strain behavior was investigated and the tensile properties were measured at 1200°C in laboratory air. Tensile creep behavior of the CMC was examined for creep stress levels of 73, 91, 114 and 136 MPa. Creep run-out, set to 100 h, was achieved for stress levels ≤ …


Modeling Fracture In Z-Pinned Composite Co-Cured Laminates Using Smeared Properties And Cohesive Elements In Dyna3d, Jason K. Freels Sep 2006

Modeling Fracture In Z-Pinned Composite Co-Cured Laminates Using Smeared Properties And Cohesive Elements In Dyna3d, Jason K. Freels

Theses and Dissertations

The purpose of the present research was three-fold: 1) gain a more sophisticated understanding of the response of co-cured composite joints with and without through-thickness reinforcement (TTR), 2) compare the behavior of specimens reinforced with various sizes and densities of reinforcement, and 3) use experimental data to verify the existing DYNA3D smeared property model. Double cantilever beam, end-notch flexure and T-section specimens reinforced with 0.011" diameter z-pins at 2% and 4% volume densities were tested to determine the mode I, mode II and mixed mode (I and II) behavior. Results were added to preliminary research in which tests were conducted …


Characterization Of Functionally Graded Materials, Benjamin D. Chapman Mar 2006

Characterization Of Functionally Graded Materials, Benjamin D. Chapman

Theses and Dissertations

The purpose of this study was to characterize the behavior of a functionally graded material through experimentation and analytical modeling. Functionally graded materials are a ceramic metal composite which transitions from metal on one face to ceramic on the opposite face. Creating reliable models required verifying the material properties. This was accomplished through the use of a static modulus of elasticity test as well as a dynamic ping test. The natural frequencies from the dynamic test were compared with finite element models to determine which material properties most accurately represented the functionally graded material. It was found that the material …


Creep-Rupture And Fatigue Behaviors Of Notched Oxide/Oxide Ceramic Matrix Composite At Elevated Temperature, Mark A. Sullivan Mar 2006

Creep-Rupture And Fatigue Behaviors Of Notched Oxide/Oxide Ceramic Matrix Composite At Elevated Temperature, Mark A. Sullivan

Theses and Dissertations

Oxide/oxide composites are being considered for use in high temperature aerospace applications where their inherent resistance to oxidation provides for better long life properties at high temperature than most other ceramic matrix composites (CMCs). One promising oxide/oxide CMC is Nextel 720/A (N720/A) which uses an 8-harness satin weave (8HSW) of Nextel 720 fibers embedded in a porous alumina matrix. Possible aerospace applications for N720/A will likely require inserting holes into the material for mounting and cooling purposes. The notch characteristics must be understood to ensure designs using the material are sufficient for the desired application. This research effort examined the …


Creep Behavior Of An Oxide/Oxide Composite With Monazite Coating At Elevated Temperatures, Sean S. Musil Mar 2005

Creep Behavior Of An Oxide/Oxide Composite With Monazite Coating At Elevated Temperatures, Sean S. Musil

Theses and Dissertations

This study focuses on experimental investigation of stress-rupture behavior (creep response) of an oxide/oxide composite in a cross-ply (0/90) lay-up at elevated temperature. The test material, Nextel 610/monazite/alumina composite, employs monazite, an oxidation-resistant interfacial coating designed to improve performance at elevated temperatures. The experimental program included monotonic tensile tests to failure and creep-rupture tests at elevated temperatures. Tensile tests served to establish an ultimate tensile strength (UTS) for the material. The ensuing creep-rupture tests involved stress levels at varying percentages of the UTS. Stress-rupture curves at 900 and 1100 degrees C were established. A family of creep curves for various …


Experimentation And Analysis Of Composite Scarf Joint, Benjamin M. Cook Mar 2005

Experimentation And Analysis Of Composite Scarf Joint, Benjamin M. Cook

Theses and Dissertations

Composite bonded scarf repairs were examined by experimentally measuring and analytically predicting the residual curing strains and strains due to mechanical loading. To accomplish this a three prong approach was used: a full strain field through a repaired laminate's thickness was measured for both a loaded specimen and a specimen with the residual strain released, models were developed for comparison to both states, and data was collected for large tensile test specimens at various stages of being scarf repaired. A ~14:1 straight scarfed one-inch wide specimen was used to collect Moire interferometry data to calculate a full strain field due …


Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller Mar 2000

Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller

Theses and Dissertations

Functionally-graded Titanium Matrix Composites, (F/G TMCs) combine the ideal properties of titanium matrix composites with the more practical machining qualities of monolithic (unreinforced) alloy. This material shows great promise in application to aerospace structural components - even in parts whose design requirements have defied the use of composite materials in the past. Successful implementation of such a material would lead to enhanced aircraft performance. However, the basic properties of a functionally-graded titanium matrix composite need to be investigated. The composite/alloy transition region, or joint area, may be less strong than its constituents and therefore determine the overall performance of the …


Investigation Into The Behavior Of Geometrically Nonlinear Composite Arches, John C. Bailey Dec 1994

Investigation Into The Behavior Of Geometrically Nonlinear Composite Arches, John C. Bailey

Theses and Dissertations

This research modifies the existing finite element formulation of a potential energy based large deformation and moderate rotation theory. Hermitian shape functions replace the existing linear bending angle interpolations. Negligible differences between the two formulations indicate the underlying kinematics limit the accuracy, not the finite element interpolations. Using the new program, numerous nonlinear arch geometries are modeled to investigate the effects of arc length and thickness variations. Local and global snapping phenomena are captured as well as through the thickness shear driven nonlinearities.


Influence Of Embedded Optical Fibers On Compressive Strength Of Advanced Composites, Stefan B. Dosedel Dec 1993

Influence Of Embedded Optical Fibers On Compressive Strength Of Advanced Composites, Stefan B. Dosedel

Theses and Dissertations

This study investigated the effects of embedding optical fibers into advanced composite materials. This combination was meant to simulate 'smart structures' that have been shown to sense several different variables in the composite including strain, temperature, and damage. A laminate orientation taken from an existing aircraft structure was used to fabricate sixteen groups of specimens which were subjected to compression testing in an IITRI fixture to determine the ultimate compressive strength and modulus of elasticity. Ten of these groups were fabricated with optical fibers while the other six were control groups and contained no optical fibers. This study showed that …