Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Creep Behavior And Deformation Mechanisms Of Spark Plasma Sintered Oxide Ceramics For Aerospace Systems At 1300˚C - 1400˚C, David D. Swanson Dec 2021

Creep Behavior And Deformation Mechanisms Of Spark Plasma Sintered Oxide Ceramics For Aerospace Systems At 1300˚C - 1400˚C, David D. Swanson

Theses and Dissertations

The mechanical behavior of YAG and LuAG was investigated at elevated temperatures. The specific materials investigated in this work include high-purity, polycrystalline YAG, high-purity, polycrystalline LuAG, and two doped variants of YAG: 2at% Yb-doped, polycrystalline YAG and 2at% Er-doped, polycrystalline YAG. Several billets of each material were prepared and processed by means of spark plasma sintering (SPS). Many different sintering parameters were utilized in order to obtain materials with various physical properties and to identify the effects of sintering parameters on the average grain size of the resulting materials. The compressive creep behavior of these materials was investigated at 1300°C …


Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton Nov 2021

Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton

Faculty Publications

Barium gallium selenide (BaGa4Se7) is a recently developed nonlinear optical material with a transmission window extending from 470 nm to 17 μm. A primary application of these crystals is the production of tunable mid-infrared laser beams via optical parametric oscillation. Unintentional point defects, such as selenium vacancies, cation vacancies (barium and/or gallium), and trace amounts of transition-metal ions, are present in BaGa4Se7 crystals and may adversely affect device performance. Electron paramagnetic resonance (EPR) and optical absorption are used to identify and characterize these defects. Five distinct EPR spectra, each representing an electron …


Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Oct 2021

Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A method of making passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes forming a three-dimensional microscopic optical structure on a cleaved tip of an optical fiber that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Improvements To Emissive Plume And Shock Wave Diagnostics And Interpretation During Pulsed Laser Ablation Of Graphite, Timothy I. Calver Sep 2021

Improvements To Emissive Plume And Shock Wave Diagnostics And Interpretation During Pulsed Laser Ablation Of Graphite, Timothy I. Calver

Theses and Dissertations

This dissertation covers nanosecond pulsed laser ablation of graphite for 4-5.7 J/cm2 fluences with 248 nm and 532 nm lasers in 1-180 Torr helium, argon, nitrogen, air, and mixed gas. Three experiments were performed to improve the interpretation of common diagnostics used to characterize pulsed laser ablation, find simple but universal scaling relationships for comparing dynamics across different materials and ablation conditions, and provide a systematic analysis of graphite emissive plume and shock wave dynamics. A scaling of the Sedov-Taylor energy ratio was developed and validated for a range of studies despite differences in wavelength, pulse duration, fluence, and …


Design And Fabrication Of Zinc Oxide Optofluidic Laser Elements, Kyle T. Bodily Jun 2021

Design And Fabrication Of Zinc Oxide Optofluidic Laser Elements, Kyle T. Bodily

Theses and Dissertations

This thesis systematically goes through the derivation, simulation, and experimentation of Zinc Oxide optofluidic micro laser elements. Single and coupled ring resonators were simulated to show single mode transmission as well as enhanced coupling capabilities when surrounded by high refractive index liquid. Devices with diameters ranging from 100-500 µm were successfully fabricated inexpensively through standard cleanroom procedures. The devices were tested using two different pump laser systems. Testing included such factors as high pump intensity, various angles of excitation, and low temperature. In all cases PL emission was observed and recorded.


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Mar 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Static Fatigue Of Hi-Nicalon S Fiber Tows At 500°C In Air And In Silicic Acid-Saturated Steam, Richard J. Reinink Mar 2021

Static Fatigue Of Hi-Nicalon S Fiber Tows At 500°C In Air And In Silicic Acid-Saturated Steam, Richard J. Reinink

Theses and Dissertations

Recent developments in aerospace propulsion systems, along with emerging interest in hypersonic air vehicles has emphasized the need for materials which can withstand extreme service environments. The leading candidates for the structural components expected to operate in these environments are SiC-based ceramic matrix composites (CMCs). When a CMC component is subjected to thermomechanical loads in an aggressive environment during service, surface cracks form. As steam penetrates cracks in the SiC matrix, it becomes saturated with silicic acid, (SI(OH)4) and attacks the SiC fibers. The interaction between the Hi-Nicalon™ S SiC fibers and the (SI(OH)4)-saturated steam is …


Fatigue Of Two Oxide/Oxide Ceramic Matrix Composites At 1200°C In Air And In Steam. Effect Of Diamond Drilled Effusion Holes, Anthony R. Cabri Mar 2021

Fatigue Of Two Oxide/Oxide Ceramic Matrix Composites At 1200°C In Air And In Steam. Effect Of Diamond Drilled Effusion Holes, Anthony R. Cabri

Theses and Dissertations

The tension-tension fatigue behavior of two oxide-oxide ceramic matrix composites (CMCs) was investigated at 1200°C in laboratory air and steam. Both composites consist of a porous oxide matrix reinforced with laminated, woven mullite/alumina (NextelTM720) fibers. The first composite had an alumina matrix, while the second had an alumina-mullite matrix. First, we assessed the effects of incorporating mullite into the matrix material on fatigue performance by studying the tension-tension fatigue behavior of alumina-mullite matrix CMC. Second, we evaluated the effects of effusion holes on the alumina matrix CMC's fatigue performance. Specimens containing an array of 17 effusion holes of 0.5-mm diameter …


Static Fatigue Of Hi-Nicalon™ S Ceramic Fiber Tows At 600°C In Air And Silicic Acid-Saturated Steam, Caleigh M. Nelson Mar 2021

Static Fatigue Of Hi-Nicalon™ S Ceramic Fiber Tows At 600°C In Air And Silicic Acid-Saturated Steam, Caleigh M. Nelson

Theses and Dissertations

Ceramic matrix composites (CMCs) have the potential to be utilized in applications such as hypersonic vehicles, aircraft leading edges, hot sections of engines, and rocket nozzles. Of particular interest are advanced SiC/SiC composites that can withstand the elevated temperatures and harsh oxidizing environments while maintaining their properties and structural integrity under an applied load. Steam, a major component of combustion environment, is one such aggressive oxidizing environment. As steam passes through the SiC/SiC composite, entering the composite interior through the cracks in the SiC matrix, it becomes saturated with silicic acid, Si(OH)4. Before incorporating SiC/SiC composites in the …


Photoinduced Trapping Of Charge At Sulfur Vacancies And Copper Ions In Photorefractive Sn2P2S6 Crystals, Timothy D. Gustafson, Eric M. Golden, Elizabeth M. Scherrer, Nancy C. Giles, A. A. Grabar, Sergey A. Basun, Jonathan E. Slagle, Larry E. Halliburton Feb 2021

Photoinduced Trapping Of Charge At Sulfur Vacancies And Copper Ions In Photorefractive Sn2P2S6 Crystals, Timothy D. Gustafson, Eric M. Golden, Elizabeth M. Scherrer, Nancy C. Giles, A. A. Grabar, Sergey A. Basun, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to monitor photoinduced changes in the charge states of sulfur vacancies and Cu ions in tin hypothiodiphosphate. A Sn2P2S6 crystal containing Cu+ (3d10) ions at Sn2+ sites was grown by the chemical vapor transport method. Doubly ionized sulfur vacancies (V2+S) are also present in the as-grown crystal (where they serve as charge compensators for the Cu+ ions). For temperatures below 70 K, exposure to 532 or 633 nm laser light produces stable Cu2+ (3d9) ions, as electrons move from Cu+ ions to …