Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Development Of Hybrid Ultra-High Performance Concrete Thermoplastic Composite Panels For Blast And Ballistic Protection, Alyssa M. Libby May 2021

Development Of Hybrid Ultra-High Performance Concrete Thermoplastic Composite Panels For Blast And Ballistic Protection, Alyssa M. Libby

Electronic Theses and Dissertations

In recent years, ultra-high performance concrete (UHPC) has become a material of interest for structures needing resistance to impact and blast loadings. These types of loadings have induced brittle flexural failure in UHPC due to punching shear from the impactor. One way to improve the impact resistance, energy absorption, and ductility of UHPC is by adding fiber-reinforced polymer (FRP) skins to the front and rear faces of the concrete, resulting in a sandwich configuration. In this study, E-glass fiber-reinforced thermoplastic laminates were bonded to UHPC panels using a heated consolidation process known as stamp thermoforming. The bond between the UHPC …


Influence Of Glass Fiber Reinforced Polymer Wraps On Corrosion Progression Of Bridge Piles In Marine Environments, Shayan Yazdani Mar 2020

Influence Of Glass Fiber Reinforced Polymer Wraps On Corrosion Progression Of Bridge Piles In Marine Environments, Shayan Yazdani

USF Tampa Graduate Theses and Dissertations

The Friendship Trail Bridge connecting Tampa to St. Petersburg was demolished in 2016. Thirteen 20 inches. by 20 inches. reinforced concrete piles supporting its superstructure were part of research studies conducted between 2004 and 2008 to explore the role of glass fiber reinforced polymers (GFRP) in corrosion repair. During demolition, piles were typically cut at the pile cap and in the splash zone. The resulting segments varied in length between 3 to 4 ft. These remnants were transported to the University of South Florida (USF) campus for postmortem analysis. The overarching goal was to establish the role of GFRP in …


Optimizing Self-Healing Wind Turbine Blades Utilizing Dicyclopentadiene Infused Vascular Networks, Giovanni Lewinski Aug 2019

Optimizing Self-Healing Wind Turbine Blades Utilizing Dicyclopentadiene Infused Vascular Networks, Giovanni Lewinski

Theses and Dissertations

Self-healing wind turbine blades can reduce costs associated with maintenance, repair, and energy compensation. Self-healing is the ability to sustain and recover from damage autonomously. The self-healing presented in this paper uses the reaction of two agents Dicyclopentadiene, DCPD, and Grubbs’ first-generation catalyst, henceforward known as a catalyst to fuel this recovery. DCPD is housed as a liquid isolated from the catalyst until a damaging event occurs, causing the two agents to mix and solidify to form the thermoset Polydicyclopentadiene, PDCPD. We discuss the efforts made to optimize the self-healing properties of wind turbine blades and provide new systems to …


Improving Ductility Of Slender Reinforced Concrete Shear Walls With Frp Sheets And Splay Anchors, Luke M. Ostrom Dec 2018

Improving Ductility Of Slender Reinforced Concrete Shear Walls With Frp Sheets And Splay Anchors, Luke M. Ostrom

Architectural Engineering

The Sylmar earthquake of 1971 caused significant damage to slender, non-ductile reinforced concrete (RC) shear wall buildings in California. A later survey by the Concrete Coalition in 2011, under the guidance of EERI members, indicated that there are over 3000 vulnerable concrete buildings in California [8]. This led to City of Los Angeles (LA) Ordinance 193893 enacted in 2015, which requires mandatory upgrades to these concrete buildings by 2035. Current practice to meet the requirements of this ordinance, with respect to RC wall buildings, involves adding new shear walls to the building plan or increasing the cross-sectional area of existing …


Detection Of Buried Non-Metallic (Plastic And Frp Composite) Pipes Using Gpr And Irt, Jonas Kavi Jan 2018

Detection Of Buried Non-Metallic (Plastic And Frp Composite) Pipes Using Gpr And Irt, Jonas Kavi

Graduate Theses, Dissertations, and Problem Reports

This research investigated alternative strategies for making buried non-metallic pipes (CFRP, GFRP, and PVC) easily locatable using Ground Penetrating Radar (GPR). Pipe diameters up to 12" and buried with up to 4 ft. of soil cover were investigated. The findings of this study will help address the detection problem of non-metallic pipelines and speed the adoption of composite pipes by the petroleum and natural gas industry. The research also investigated the possibility of locating buried pipes transporting hot fluids using Infrared Thermography (IRT).

Results from the study have shown that, using carbon fabric and aluminum tape overlay on non‑metallic pipes …


Flexural Rigidity Characterization Of Retrofitted Frp Plates, Steven J. Makonis Jr., Stella B. Bondi, Zia Razzaq Jan 2013

Flexural Rigidity Characterization Of Retrofitted Frp Plates, Steven J. Makonis Jr., Stella B. Bondi, Zia Razzaq

Civil & Environmental Engineering Faculty Publications

Presented herein is a procedure and numerical results for flexural rigidity characterization of Fiber Reinforced Polymer (FRP) plates retrofitted with various types of fabrics. The FRP plates were retrofitted with Kevlar® 49 (Aramid), Carbon Fiber (Harness-Satin H5), and Unidirectional Carbon Fiber (T700 Aerospace Grade) fabrics, respectively. The FRP plate flexural rigidity values were calculated with a central finitedifference iterative scheme while utilizing the experimental load-deflection relations based on bending tests. The tests were performed on each plate by applying a concentrated load at the center. A fourth-order partial differential equation of plate equilibrium was adopted to estimate the plate flexural …