Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Novel Integration Of Conductive-Ink Circuitry With A Paper-Based Microfluidic Battery As An All-Printed Sensing Platform, Rishi A. Kripalani Dec 2016

Novel Integration Of Conductive-Ink Circuitry With A Paper-Based Microfluidic Battery As An All-Printed Sensing Platform, Rishi A. Kripalani

Master's Theses

The addition of powered components for active assays into paper-based analytical devices opens new opportunities for medical and environmental analysis in resource-limited applications. Current battery designs within such devices have yet to adopt a ubiquitous circuitry material, necessitating investigation into printed circuitry for scalable platforms. In this study, a microfluidic battery was mated with silver-nanoparticle conductive ink to prototype an all-printed sensing platform. A multi-layer, two-cell device was fabricated, generating 200 μA of direct electrical current at 2.5 V sustained for 16 minutes with a power loss of less than 0.1% through the printed circuitry. Printed circuitry traces exhibited resistivity …


Structure-Property Relationships Of Polyisobutylene-Block-Polyamide Thermoplastic Elastomers, Morgan Dunn Heskett Dec 2016

Structure-Property Relationships Of Polyisobutylene-Block-Polyamide Thermoplastic Elastomers, Morgan Dunn Heskett

Master's Theses

Thermoplastic elastomers (TPEs) are a class of polymer fit for a wide variety of applications due to their customizability. In the synthesis of these types of materials, an elastically-performing polymer, deemed the “soft block,” is combined with a stiffer “hard block” polymer, each of which can be selected based on their own specific properties in order to achieve desired material behavior in the final copolymer. Recently, the use of polyisobutylene as a soft block in combination with a polyamide hard block has been investigated for use in TPE synthesis. While the material showed some promising behavior, many properties were still …


Nanoindentation Techniques For The Evaluation Of Silicon Nitride Thin Films, Weston T. Mangin Dec 2016

Nanoindentation Techniques For The Evaluation Of Silicon Nitride Thin Films, Weston T. Mangin

Master's Theses

Silicon nitride thin films are of interest in the biomedical engineering field due to their biocompatibility and favorable tribological properties. Evaluation and understanding of the properties of these films under diverse loading and failure conditions is a necessary prerequisite to their use in biomedical devices. Three wafers of silicon nitride-coated silicon were obtained from Lawrence Livermore National Laboratory and used to create 96 samples. Samples were subjected to nanoindentation testing to evaluate the mechanical properties of the film. Samples were subjected to nanoimpact testing to compare the damage resistance of the film to separate nanoimpact types. Samples were subjected to …


Evaluation Of Efficiency Of Various Materials To Shield From Radiation In Space Using The Monte Carlo Transport Code Called Fluka, Roman Savinov Dec 2016

Evaluation Of Efficiency Of Various Materials To Shield From Radiation In Space Using The Monte Carlo Transport Code Called Fluka, Roman Savinov

Master's Theses

The purpose of this study is to improve spacecraft shielding from radiation in space. It focuses on the evaluation of shielding efficiency of different materials. The efficiency of a shield is evaluated by the dose profile within the shield and the amount of dose absorbed by a target using the Monte Carlo transport code called FLUKA. The output of this code is validated by recreating the experiments from published papers and comparing the results. Once the FLUKA’s output is validated, the efficiency of sixteen materials, subject to SPE and GCR sources, are evaluated. The efficiency comparison is made by fixing …


Inquiry Of Graphene Electronic Fabrication, John Rausch Greene Sep 2016

Inquiry Of Graphene Electronic Fabrication, John Rausch Greene

Master's Theses

Graphene electronics represent a developing field where many material properties and devices characteristics are still unknown. Researching several possible fabrication processes creates a fabrication process using resources found at Cal Poly a local industry sponsor. The project attempts to produce a graphene network in the shape of a fractal Sierpinski carpet. The fractal geometry proves that PDMS microfluidic channels produce the fine feature dimensions desired during graphene oxide deposit. Thermal reduction then reduces the graphene oxide into a purified state of graphene. Issues arise during thermal reduction because of excessive oxygen content in the furnace. The excess oxygen results in …


Correlation Of Polymer Performance And Hansen Solubility Parameters, Daniel Jobse Mania Aug 2016

Correlation Of Polymer Performance And Hansen Solubility Parameters, Daniel Jobse Mania

Master's Theses

Ready-to-use (RTU) grout is becoming more important to the finish and remodeling construction industry. Market research shows it is a fast-growing product that not only is creating its own space, but is beginning to supplant existing technology.

The original intent of this research was to investigate formulation parameters and how they affect grout performance. It was learned that particle size and oil absorption (OA) value are important filler properties that affect performance as much as adequate packing density and optimal pigment volume concentration (PVC) without going beyond critical PVC (CPVC).

Polymer architecture was also determined to be extremely important, but …


Material Selection And Testing For A Radiation Therapy Catheter, Philip James Wadlow Aug 2016

Material Selection And Testing For A Radiation Therapy Catheter, Philip James Wadlow

Master's Theses

Three different polymers (a high-density polymer and two other polymers) were tested for use as an x-ray catheter in a radiation therapy application. This report describes the testing of these three materials to determine which material is the best option for a long use catheter. Tests included tensile, simulated clinical life, and other tests. Some testing was performed using nitrogen and an industrial coolant. Testing revealed significant non-circularities for some catheters. With increasing pressure, the circularity of these catheters increased. The tensile tests were performed on samples with varying doses of radiation. Tensile testing showed significant decreases in ultimate tensile …


Superalloy Metallurgy A Gleeble Study Of Environmental Fracture In Inconel 601, Alan C. Demmons Jun 2016

Superalloy Metallurgy A Gleeble Study Of Environmental Fracture In Inconel 601, Alan C. Demmons

Master's Theses

At temperatures above 0.5 Tm and in aggressive atmospheres predicting alloy performance is particularly challenging. Nickel alloys used in regimes where microstructure and properties are altered dynamically present unique requirements. Exposure may alter properties with unexpected early failure. The Gleeble is a valuable tool for investigation and simulation of thermo-mechanical properties of an alloy in various regimes up to the threshold of melting. In this study, four regimes of temperature and strain rate were simulated in an argon atmosphere to both investigate and document normal and abnormal failure modes. Commercial Inconel 601 was tested in selected regimes and in two …


Feasibility Of Fused Deposition Of Ceramics With Zirconia And Acrylic Binder, Lindsay V. Page Jun 2016

Feasibility Of Fused Deposition Of Ceramics With Zirconia And Acrylic Binder, Lindsay V. Page

Master's Theses

Processing of ceramics has always been difficult due to how hard and brittle the material is. Fused Deposition of Ceramics (FDC) is a method of additive manufacturing which allows ceramic parts to be built layer by layer, abetting more complex geometries and avoiding the potential to fracture seen with processes such as grinding and milling. In the process of FDC, a polymeric binder system is mixed with ceramic powder for the printing of the part and then burned out to leave a fully ceramic part. This experiment investigates a new combination of materials, zirconia and acrylic binder, optimizing the process …


Finite Element Modeling Of Delamination Damage In Carbon Fiber Laminates Subject To Low-Velocity Impact And Comparison With Experimental Impact Tests Using Nondestructive Vibrothermography Evaluation, George Rodriguez Iv Jun 2016

Finite Element Modeling Of Delamination Damage In Carbon Fiber Laminates Subject To Low-Velocity Impact And Comparison With Experimental Impact Tests Using Nondestructive Vibrothermography Evaluation, George Rodriguez Iv

Master's Theses

Carbon fiber reinforced composites are utilized in many design applications where high strength, low weight, and/or high stiffness are required. While composite materials can provide high strength and stiffness-to-weight ratios, they are also more complicated to analyze due to their inhomogeneous nature. One important failure mode of composite structures is delamination. This failure mode is common when composite laminates are subject to impact loading.

Various finite element methods for analyzing delamination exist. In this research, a modeling strategy based on contact tiebreak definitions in LS-DYNA®was used. A finite element model of a low-velocity impact event was created to …


Design And Testing Of A Top Mask Projection Ceramic Stereolithography System For Ceramic Part Manufacturing, Dylan Robert De Caussin Jun 2016

Design And Testing Of A Top Mask Projection Ceramic Stereolithography System For Ceramic Part Manufacturing, Dylan Robert De Caussin

Master's Theses

Ceramic manufacturing is an expensive process with long lead times between

the initial design and final manufactured part. This limits the use of ceramic as a viable material unless there is a large project budget or high production volume associated with the part. Ceramic stereolithography is an alternative to producing low cost parts through the mixing of a photo curable resin and ceramic particles. This is an additive manufacturing process in which each layer is built upon the previous to produce a green body that can be sintered for a fully dense ceramic part.

This thesis introduces a new approach …