Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Mechanical Characterization Of Additively Manufactured Alloys Compared To Their Wrought Counterparts, Laith A. Alqawasmi Apr 2023

Mechanical Characterization Of Additively Manufactured Alloys Compared To Their Wrought Counterparts, Laith A. Alqawasmi

Mechanical Engineering ETDs

Additive manufacturing is a method of manufacturing based on building parts layer by layer, allowing for more control over shape of the product, therefore reducing machining costs, reducing material waste, faster production times and the ability to build complex engineering design that other manufacturing technologies won’t be able to produce. This research is on the tensile and indentation testing (following ASME standards) of 3D printed Ti-6Al-4V and Inconel 718 built by powder-based direct energy deposition technology. Ti-6Al-4V is an attractive material for the aerospace and aviation industry, and Inconel 718, a nickel-chromium based superalloy, is an attractive material for usage …


Characterization Of Materials Properties In Additively Manufactured Aisi-420 Martensitic Steel Deposited By Laser Engineered Net Shaping, Md Mehadi Hassan Nov 2022

Characterization Of Materials Properties In Additively Manufactured Aisi-420 Martensitic Steel Deposited By Laser Engineered Net Shaping, Md Mehadi Hassan

Nanoscience and Microsystems ETDs

Metal additive manufacturing (AM) is a disruptive technology enabling the fabrication of complex and near-net-shaped parts by adding material layer-wise. It offers reduced lead production time. AM processes are finding applications in many industrial sectors such as aerospace, automotive, biomedical, and mold tooling. Despite the tremendous advantages of AM, some challenges still prevent this technology's adoption in high-standard applications. Anisotropy and inhomogeneity in the mechanical properties of the as-built parts and the existence of pores and lack-of-fusion defects are considered the main issues in directed energy deposition (L-DED) parts. Laser-engineered net shaping LENS® offers excellent possibilities to fabricate metal tools …


Understanding Processing And Mechanics Of Extrusion-Based Additive Manufacturing For Multi-Material Parts, Jafar N/A Ghorbani Apr 2022

Understanding Processing And Mechanics Of Extrusion-Based Additive Manufacturing For Multi-Material Parts, Jafar N/A Ghorbani

Mechanical Engineering ETDs

Despite the design freedom that additive manufacturing (AM) processes provide, there are still challenges in using some AM processes for end-use products. Fused filament fabrication (FFF), also known as material extrusion, is one of the AM technologies that has been used mainly for prototyping due to the low cost of machines, raw material, and ease of operation. Another advantage of FFF is its ease of integration with other additive or subtractive technologies. However, some disadvantages such as relatively poor and anisotropic mechanical properties have hindered FFF for end-use engineering components. The first chapter of this dissertation is a brief review …


Printing Parameter Determination And Characterization Of Additively Manufactured Kovar Steel, Will Macgreggor Davidson Apr 2021

Printing Parameter Determination And Characterization Of Additively Manufactured Kovar Steel, Will Macgreggor Davidson

Mechanical Engineering ETDs

Kovar (ASTM F15, UNS K94610) steel has many applications across Sandia National Laboratories but is best known within academia and industry for its glass-to-metal and glass-to-ceramic hermetic sealing capabilities. Successful printing parameters for a Renishaw AM400 to additively manufacture artifacts from Kovar steel powder have been determined. The printed test artifacts have been studied for ultimate tensile strength, density, surface roughness, hardness, bulk composition, and impact toughness. Longer throughput measurements such as porosity, coefficient of thermal expansion, and grain structure studies have been established for future delivery to the research team. Yet another delivery from this thesis research is a …


The Influence Of Process Variables On Physical And Mechanical Properties In Laser Powder Bed Fusion, Joshua Robert Koepke, Bradley Jared, Yu-Lin Shen Apr 2019

The Influence Of Process Variables On Physical And Mechanical Properties In Laser Powder Bed Fusion, Joshua Robert Koepke, Bradley Jared, Yu-Lin Shen

Mechanical Engineering ETDs

Laser powder bed fusion additive manufacturing consists of a process that incorporates many process variables into fabricating parts. This study investigated several of these process variables and determined their influence on part properties. The process variables investigated include laser power, velocity, focus offsets, layer thickness, and powder particle size. Physical properties will be compared including surface roughness, form, and density. Tensile testing provided mechanical properties including unloading Young’s modulus, ultimate tensile strength, yield strength, uniform elongation, and ductility. Process maps will be developed that will provide recommendations for these process settings. It will be shown that these laser settings can …


Reducing Stress In 3d Printed Parts Made With Laser Engineered Net Shaping, Shaun Ross Whetten Apr 2018

Reducing Stress In 3d Printed Parts Made With Laser Engineered Net Shaping, Shaun Ross Whetten

Mechanical Engineering ETDs

Thermal cycling and repeated melting/solidification cycles characteristic of 3D metal printing processes causes buildup of residual stress in 3D printed parts. Using laser engineered net shaping (LENS®), residual stresses are formed leading to deformation and possible cracking of the 3D printed metal components. The LENS process offers opportunities for rapid prototyping, alternative manufacturing processes, and repair of worn/broken components so it is important to be able to minimize the effects of residual stress. Work was performed to understand the benefit of substrate heating on reducing residual stress in metal parts made using the LENS process. Substrate deformation, and destructive methods …