Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Electrical and Computer Engineering Faculty Research & Creative Works

Microfluidics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A New Microsensor System For Plant Root Zone Monitoring, Chang-Soo Kim, Sandeep Sathyan, D. M. Porterfield Jan 2005

A New Microsensor System For Plant Root Zone Monitoring, Chang-Soo Kim, Sandeep Sathyan, D. M. Porterfield

Electrical and Computer Engineering Faculty Research & Creative Works

The objective of this work is to develop a new microsensor system that can monitor dissolved oxygen and hydration environment at the plant root zone. A miniaturized plant growth system is prepared including the root zone layer, either a porous ceramic tube or porous ceramic wafer on which the plant is grown, and an underlying fluidic channel to deliver nutrients and water to the root zone. We demonstrate the feasibility of using a flexible microsensor array for dissolved oxygen detection, and a four-electrode impedance microelectrode for wetness detection on the surface of a porous tube nutrient delivery system. The unique …


An Intelligent Dissolved Oxygen Microsensor System With Electrochemically Actuated Fluidics, Chang-Soo Kim, Jongwon Park, Xinbo He Jan 2004

An Intelligent Dissolved Oxygen Microsensor System With Electrochemically Actuated Fluidics, Chang-Soo Kim, Jongwon Park, Xinbo He

Electrical and Computer Engineering Faculty Research & Creative Works

A new dissolved oxygen monitoring microsystem is proposed to achieve in situ intelligent self-calibration by using an electrochemically actuated fluidic system. The electrochemical actuation, based on water electrolysis, plays two critical roles in the proposed microsystem. First, the electrochemically generated gases serve as the calibrants for the in situ 2-point calibration/diagnosis procedure of the microsensor in a chip. Secondly, the electrochemical generation and collapse of gas bubbles provide the driving force of the bidirectional fluidic manipulation for sampling and dispensing of the sample solution. A microsystem including a dissolved oxygen microprobe, electrochemical actuators, and a fluidic structure are prepared by …