Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 79

Full-Text Articles in Engineering

Optical Perturbation Of Protein Kinase A Activity Via Photoactivatable Inhibitor Peptides, Peter Chen May 2023

Optical Perturbation Of Protein Kinase A Activity Via Photoactivatable Inhibitor Peptides, Peter Chen

McKelvey School of Engineering Theses & Dissertations

Protein Kinase A (PKA) plays important roles in diverse biological processes such as sleep, long term memory, and synaptic plasticity. In addition, PKA also acts as an integrator of neuromodulator signaling though G protein-coupled receptor activation. However, despite genetic knockout and pharmacological inhibition experiments that demonstrate the importance of PKA, it is unclear where, when, or how PKA plays these roles in cellular physiology and behavior. In order to better understand the function of PKA in these processes, and how neuromodulator signaling drives complex behavioral changes, there exists a need for a method to selectively activate/inactivate PKA with high spatial …


Single-Molecule Super-Resolution Imaging Of Geobacter Sulfurreducens Under Anaerobic Conditions, Ziyi Hu May 2023

Single-Molecule Super-Resolution Imaging Of Geobacter Sulfurreducens Under Anaerobic Conditions, Ziyi Hu

McKelvey School of Engineering Theses & Dissertations

Geobacter sulfurreducens are anaerobic bacteria capable of making electrical contacts with other organisms and extracellular electron acceptors. The challenge of imaging live Geobacter bacteria is maintaining anaerobic conditions during the imaging process. In this thesis, we augment a single-molecule localization microscope (SMLM) with a home-built anaerobic imaging chamber and use constant argon bubbling to maintain oxygen-free imaging conditions. To validate the imaging protocol, we use the transient binding of Nile red to resolve the spherical morphology of lipid-coated glass spheres with nanoscale resolution. However, when imaging Geobacter, the distribution of Nile red localizations is non-uniform, both between different cells …


Preparing Non-Human Primates To Study Hand-Eye Coordination In Frontal Eye Fields (Fef) During Delayed Movement Task, Juliusz Cydzik May 2023

Preparing Non-Human Primates To Study Hand-Eye Coordination In Frontal Eye Fields (Fef) During Delayed Movement Task, Juliusz Cydzik

McKelvey School of Engineering Theses & Dissertations

ABSTRACT OF THE THESIS Preparing Non-Human Primates to Study Hand-Eye Coordination in Frontal Eye Fields (FEF) During Delayed Movement Task by Juliusz Cydzik Master of Science in Biomedical Engineering Washington University in St. Louis, 2023 Professor Lawrence Snyder, Chair Hand-eye coordination enables humans and non-human primates to use their hands and eyes to perform various tasks. We are interested in coordination at the systems level, where saccades and reaches are encoded. The parietal reach region (PRR), situated at the posterior end of the intraparietal sulcus (IPS) and overlapping portions of the medial intraparietal area (MIP) and V6a, is commonly attributed …


Comparison Of In-Vitro 3d Human Embryoids With Current Models For Gastrulation, Jin Park Jan 2023

Comparison Of In-Vitro 3d Human Embryoids With Current Models For Gastrulation, Jin Park

McKelvey School of Engineering Theses & Dissertations

Gastrulation is an early morphogenetic process that is conserved across most metazoans and lays out the future body plan through the formation and shaping of the three germ layers: endoderm, mesoderm, and ectoderm. Despite its importance, not much is known about the events surrounding human gastrulation that occurs in utero due to ethical and technical limitations on studying human embryos. Therefore, many researchers have devised protocols for creating in vitro models of gastrulation using embryonic stem cells. Initially starting with mouse embryonic stem cells, the field of in vitro embryo models has advanced rapidly, with protocols using human embryonic stem …


The Role Of The Neurodevelopmental Disorder Gene Myt1l In Mammalian Brain Development, Jiayang Chen Dec 2022

The Role Of The Neurodevelopmental Disorder Gene Myt1l In Mammalian Brain Development, Jiayang Chen

Arts & Sciences Electronic Theses and Dissertations

Recent human genetic studies have associated mutations in a gene called Myelin Transcription Factor 1 Like (MYT1L) with neurodevelopmental disorders (NDDs). Patients with MYT1L loss of function (LoF) mutations (MYT1L Syndrome patients) demonstrate shared symptoms such as microcephaly, attention deficit and hyperactivity disorder (ADHD), and obesity. Despite prior studies showing MYT1L overexpression facilitates neuronal differentiation in vitro, its functions in vivo, especially in the mammalian brain, and how its mutation leads to human disease pathology remains poorly understood. Here, I established the first mouse model of MYT1L Syndrome mimicking a patient specific LoF mutation. I found mice with Myt1l heterozygous …


Understanding Control Of Metabolite Dynamics And Heterogeneity, Christopher John Hartline Aug 2022

Understanding Control Of Metabolite Dynamics And Heterogeneity, Christopher John Hartline

McKelvey School of Engineering Theses & Dissertations

Microbes live in complex and continually changing environments. Rapid shifts in nutrient availability are a common challenge for microbes, and cause changes in intracellular metabolite levels. Microbial response to dynamic environments requires coordination of multiple levels of cellular machinery including gene expression and metabolite concentrations. This coordination is achieved through metabolic control systems, which sense metabolite concentrations and direct cellular activity in response. Several reoccurring control architectures are found throughout diverse metabolic systems, which suggests underlying evolutionary advantages for using these control systems to coordinate metabolism. One common, yet understudied, control architecture is the positive feedback metabolite uptake loop, which …


Ligand- And Strain-Specific Control Of Microbial Communities, Austin Grant Rottinghaus Aug 2022

Ligand- And Strain-Specific Control Of Microbial Communities, Austin Grant Rottinghaus

McKelvey School of Engineering Theses & Dissertations

Microbes naturally coexist in complex, multi-strain communities that are valuable assets for their host. Commensal and probiotic microbes prevent pathogen colonization, reduce the frequency and severity of various ailments, provide essential nutrients, and offer various additional benefits. Understanding the dynamics of and tailoring microbial communities to provide additional beneficial functions is a primary focus of researchers in medicine and agriculture. To date, consortia have primarily been manipulated by supplementing the communities with microbes that were engineered in vitro or by introducing stimuli that alter the metabolism or composition of the community. This method has proven successful, with numerous microbes engineered …


Modeling, Analysis, And Simulation To Reveal The Mechanisms Of Ciliary Beating, Louis Woodhams Aug 2022

Modeling, Analysis, And Simulation To Reveal The Mechanisms Of Ciliary Beating, Louis Woodhams

McKelvey School of Engineering Theses & Dissertations

Cilia are microscopic cellular appendages that help us breathe by clearing our airways, maintain the health of our central nervous system by circulating cerebrospinal fluid, and allow us to reproduce by transporting eggs and propelling sperm cells. Cilia even determine the asymmetry of our internal organs during embryonic development. However, the mechanisms underlying ciliary beating are not fully understood. Questions remain as to how arrays of the motor protein dynein generate the propulsive waveforms observed in cilia and how structural elements within the cilium and its connection to the cell deform during beating. In the current work, mathematical modeling, analysis, …


Development Of The Assessment Of Clinical Prediction Model Transportability (Apt) Checklist, Sean Chonghwan Yu Aug 2022

Development Of The Assessment Of Clinical Prediction Model Transportability (Apt) Checklist, Sean Chonghwan Yu

McKelvey School of Engineering Theses & Dissertations

Clinical Prediction Models (CPM) have long been used for Clinical Decision Support (CDS) initially based on simple clinical scoring systems, and increasingly based on complex machine learning models relying on large-scale Electronic Health Record (EHR) data. External implementation – or the application of CPMs on sites where it was not originally developed – is valuable as it reduces the need for redundant de novo CPM development, enables CPM usage by low resource organizations, facilitates external validation studies, and encourages collaborative development of CPMs. Further, adoption of externally developed CPMs has been facilitated by ongoing interoperability efforts in standards, policy, and …


Development Of Noninvasive Biomarkers For Cervical Spondylotic Myelopathy, Dinal Jayasekera Aug 2022

Development Of Noninvasive Biomarkers For Cervical Spondylotic Myelopathy, Dinal Jayasekera

McKelvey School of Engineering Theses & Dissertations

Cervical spondylotic myelopathy (CSM) represents the most common cause of chronic spinal cord injury (SCI) in adults. Many patients with symptomatic CSM will experience a decline in neurological function and consequently undergo surgical decompression. Unfortunately, surgeons are unable to adequately counsel patients about the benefits of surgery because the natural history of disease and outcome after decompression vary widely among patients. This can hinder the decision-making capacity of patients and physicians. Therefore, we require additional tools to help guide therapy and counsel patients with CSM. Noninvasive biomarkers present valuable potential as predictors of a patient’s recovery in the long term. …


Role Of Ligand Architecture On Collective Cell Invasion, Amrit Bagchi Aug 2022

Role Of Ligand Architecture On Collective Cell Invasion, Amrit Bagchi

McKelvey School of Engineering Theses & Dissertations

Epithelial cell collectives utilize extra-cellular matrix (ECM) fibers to undergo collective migration critical in regeneration, repair and cancer metastasis. However, very little is known about the various factors which determine the ability of cellular collectives to utilize ECM fibers to undergo these critical processes in-vivo. First part of the dissertation focusses on understanding how cell collectives exploit specific properties, like stiffness and fiber length to undergo collective streaming. It is also unclear how cellular forces, cell-cell adhesion, and velocities are coordinated within streams. To independently tune stiffness and collagen fiber length, we developed new hydrogels and discovered invasion-like streaming of …


The Effects Of Host-Like Environmental Signals And Gene Expression On Capsule Growth In Cryptococcus Neoformans, Yu Min Jung Aug 2022

The Effects Of Host-Like Environmental Signals And Gene Expression On Capsule Growth In Cryptococcus Neoformans, Yu Min Jung

McKelvey School of Engineering Theses & Dissertations

Cryptococcus neoformans is a fungal pathogen that causes cryptococcosis, a disease that kills almost 200,000 people worldwide each year. A unique feature of this deadly yeast is its polysaccharide capsule, which is known to be associated with its virulence. Here, we systematically explore the effects of all possible combinations of 4 capsule-inducing signals on gene expression, cell size, and capsule size. These signals are medium (YPD, DMEM or RPMI), temperature (30°C or 37°C), CO2 (room air or 5%), cAMP (0 mM or 20 mM), and pH buffer (HEPES/no HEPES). We explore the effects of exogenous cAMP at a range …


Anti-Amyloid Chimeric Antigen Receptor Macrophages For Alzheimer's Disease Immunotherapy, Qiuyun Pan May 2022

Anti-Amyloid Chimeric Antigen Receptor Macrophages For Alzheimer's Disease Immunotherapy, Qiuyun Pan

McKelvey School of Engineering Theses & Dissertations

Alzheimer’s disease is the most common cause of dementia. None of the available drugs can cure the disease. Chimeric Antigen Receptor (CAR) macrophages, because of their phagocytic activity, have potential as a cellular treatment for amyloid aggregation. In this study, we generated an anti-amyloid CAR hematopoietic progenitor cell line. By inducing the progenitor cell line to differentiate into macrophages, we show that the anti-amyloid CAR-Macrophage has enhanced specific phagocytic activity towards amyloid in in vitro experiments. In addition, in ex vivo experiments, anti-amyloid CAR significantly reduces the plaque load on brain slice from APP/PS1 mice when compared to a non-targeted …


Quantifying Components Of Protein Translation And Metabolite Heterogeneity In Isogenic Microbial Populations, Alexander Schmitz Dec 2021

Quantifying Components Of Protein Translation And Metabolite Heterogeneity In Isogenic Microbial Populations, Alexander Schmitz

McKelvey School of Engineering Theses & Dissertations

Cell-to-cell variation in gene expression and metabolite levels have a significant impact on ensemble productivity of microbial bioproduction. New metabolic engineering tools and approaches are needed that consider cell cultures as an amalgam of uniquely behaving individuals to improve the slow commercialization of metabolically engineered systems. Stochastic cellular process including gene expression, metabolism, and growth lead to phenotypic variation between genetically identical cells. Understanding and the ability to control microbial phenotypic variation is key to improving microbial bioproduction metrics. During protein translation, codon usage strongly influences ensemble gene expression but the effect on the variation of gene expression was not …


Defining The Role Of Elastic Fibers In Tendon Mechanics, Jeremy D. Eekhoff Dec 2021

Defining The Role Of Elastic Fibers In Tendon Mechanics, Jeremy D. Eekhoff

McKelvey School of Engineering Theses & Dissertations

Tendons serve as a linking component of the musculoskeletal system by transferring forces between muscle and bone. As such, the structural proteins of the tendon extracellular matrix are of vital importance for the tissue to function properly and maintain its mechanical integrity. Collagen is the principal constituent of tendon and makes up its aligned hierarchical organization. Other structural proteins, such as elastin, are in comparison understudied and not well understood in relation to tendon function. Elastin, the main component of elastic fibers, has unique mechanical properties including high extensibility, fatigue resistance, and elasticity; these properties are important for elastin-rich tissues …


Toward Lignin Valorization: Development Of Rhodococcus Opacus Pd630 As A Chassis For Triacylglycerol (Tag) Production From Recalcitrant Aromatic Feedstocks, Rhiannon R. Carr Dec 2021

Toward Lignin Valorization: Development Of Rhodococcus Opacus Pd630 As A Chassis For Triacylglycerol (Tag) Production From Recalcitrant Aromatic Feedstocks, Rhiannon R. Carr

McKelvey School of Engineering Theses & Dissertations

The advent of the industrial era was precipitated by the discovery of fossil fuels, and ushered in unprecedented changes for humanity included but not limited to the development of rapid transit and communications, improvements to food distribution and preservation, the mass production of goods, and a radical rearrangement of communities from relatively small enclaves to metropolises. With all the benefits, however, come considerable costs, especially to the global environment. Greenhouse gas emissions, built up over centuries of unregulated combustion, have precipitated a rate of global temperature change unparalleled in the 4.5 billion-year history of this planet. In order to preserve …


Towards The Discovery Of Prognostic Biomarkers For Glioblastoma Using Resting-State Functional Connectivity, Andy G. S. Daniel Aug 2021

Towards The Discovery Of Prognostic Biomarkers For Glioblastoma Using Resting-State Functional Connectivity, Andy G. S. Daniel

McKelvey School of Engineering Theses & Dissertations

Gliomas are highly diffusive, primary brain tumors. The most malignant form, glioblastoma, has a dismal survival rate: 14-17 months following the current standard of care, which consists of surgery, radiation, and chemotherapy. Insights into the molecular, cellular, and microenvironmental components of glioblastoma have revealed a vast array of factors utilized to support its proliferation, infiltration, and resistance to treatment. Recent advancements have also identified diagnostic and prognostic biomarkers that are now being used to guide treatment planning. However, survival has improved only marginally, thus emphasizing the continued need for novel biomarkers and treatment strategies. Given its delicate location in the …


Disentangling Glial Diversity In Peripheral Nerves At Single Nuclei Resolution, Aldrin Kay Yuen Yim Aug 2021

Disentangling Glial Diversity In Peripheral Nerves At Single Nuclei Resolution, Aldrin Kay Yuen Yim

Arts & Sciences Electronic Theses and Dissertations

The ability to discern gene expression at single cell level is revolutionizing our understanding of both basic biology and human health. Peripheral nerves are essential communicators between the outside world and the CNS, as evidenced by the devastating effects of diseases that disrupt them, such as ALS, Charcot-Marie-Tooth Syndrome and diabetic neuropathy. Understanding peripheral nerve dysfunction at a mechanistic level is of considerable interest due to the increasing prevalence and associated patient care costs of these disorders. Although most research of the peripheral nerve has focused on glial-axonal interactions, the important contributions of other cell types besides Schwann cells, such …


Human Ipsc Tissue-Engineered Cartilage For Disease Modeling Of Skeletal Dysplasia-Causing Trpv4 Mutations, Amanda R. Dicks Aug 2021

Human Ipsc Tissue-Engineered Cartilage For Disease Modeling Of Skeletal Dysplasia-Causing Trpv4 Mutations, Amanda R. Dicks

McKelvey School of Engineering Theses & Dissertations

Cartilage is essential to joint development and function. However, there is a variety of cartilage diseases, ranging from developmental (e.g., skeletal dysplasias) to degenerative (e.g., arthritis), in which treatments and therapeutics are lacking. For example, specific point mutations in the ion channel transient receptor potential vanilloid 4 (TRPV4) prevent proper joint development, leading to mild brachyolmia and severe, neonatally lethal metatropic dysplasia. Tissue-engineered cartilage offers an opportunity to elucidate the underlying mechanisms of these cartilage diseases for the development of treatments. Human induced pluripotent stem cells (hiPSCs) are an improved cell source option for cartilage tissue engineering given their minimal …


Mechanisms For Osteoblast And Osteocyte Initiation And Sustainment Of Bone Formation In Young-Adult And Aged Mice, Taylor Lynn Harris Aug 2021

Mechanisms For Osteoblast And Osteocyte Initiation And Sustainment Of Bone Formation In Young-Adult And Aged Mice, Taylor Lynn Harris

McKelvey School of Engineering Theses & Dissertations

The cellular mechanisms for loading-induced bone formation, from osteocyte mechano-sensation to osteoblast-directed bone formation, are not well understood. Elucidating these mechanisms and identifying any processes that are disrupted in aged mice can aide in the development of new anabolic drugs for treating diseases like osteoporosis. This thesis begins by investigating the genes expressed by osteocytes following loading at an early mechanosensitive (4-hr) timepoint, and later at a bone-forming (day 5) timepoint. We demonstrated increases in Ngf and Wnt1 in osteocyte-enriched intracortical bone by laser capture microdissection and microarray analysis. These results were important in demonstrating the presence of Ngf in …


Elucidating And Leveraging Dynamics-Function Relationships In Neural Circuits Through Modeling And Optimal Control, Sruti Mallik Aug 2021

Elucidating And Leveraging Dynamics-Function Relationships In Neural Circuits Through Modeling And Optimal Control, Sruti Mallik

McKelvey School of Engineering Theses & Dissertations

A fundamental research question in neuroscience pertains to understanding how neural networks through their activity encode and decode information. In this research, we build on methods from theoretical domains such as control theory, dynamical systems analysis and reinforcement learning to investigate such questions. Our objective is two-fold: first, to use methods from engineering to identify specific objectives that neural circuits might be optimizing through their spatiotemporal activity patterns, and second, to draw motivation from neuroscience to formulate new engineering principles such as synthesis of dynamical networks for decentralized control applications. We specifically take a top-down, optimization driven approach in our …


Long-Term Neural Activity Recorders Using Energy-Based Sensing, Compressive Computation And Data Logging, Darshit Mehta Aug 2021

Long-Term Neural Activity Recorders Using Energy-Based Sensing, Compressive Computation And Data Logging, Darshit Mehta

McKelvey School of Engineering Theses & Dissertations

Insects are ideal candidates for developing bio-robotic systems owing to their ability to thrive in almost any environment. For example, neurons in their exquisite olfactory sensory systems can be tapped to create a sensing platform for standoff chemical monitoring. However, for enabling such cyborg systems, it is vital that the neural activity of a freely behaving organism can be measured for long periods of time. The current state-of-the-art neural recording techniques are power-intensive and they either need batteries, which make them too bulky for insects, or they have to maintain a continuous telemetry link to an external power source which …


Subject-Specific Musculoskeletal Modeling Of Hip Dysplasia Biomechanics, Ke Song May 2021

Subject-Specific Musculoskeletal Modeling Of Hip Dysplasia Biomechanics, Ke Song

McKelvey School of Engineering Theses & Dissertations

Developmental dysplasia of the hip (DDH) is characterized by abnormal bony anatomy, causes pain and functional limitations, and is a prominent risk factor for premature hip osteoarthritis. Although the pathology of DDH is believed to be mechanically-induced, little is known about how DDH anatomy alters hip biomechanics during activities of daily living, partly due to the difficulties with measuring hip muscle and joint forces. Musculoskeletal models (MSMs) are useful for dynamic simulations of joint mechanics, but the reliability of MSMs for DDH research is limited by an accurate model representation of the unique hip anatomy. To address such challenges, this …


Cortical Organization In Humans And Nonhuman Primates: The Evolution Of Cognitive Areas And Circuits, Chad Joseph Donahue May 2021

Cortical Organization In Humans And Nonhuman Primates: The Evolution Of Cognitive Areas And Circuits, Chad Joseph Donahue

McKelvey School of Engineering Theses & Dissertations

Similarities in organization of cerebral cortex in humans and nonhuman primates offer the promise of leveraging data from invasive animal studies to better understand the complexities of the human brain, particularly those related to higher cognitive function (e.g. attention, working memory, language). Such comparisons necessitate the identification of convincing cortical homologues (areas or regions presumed to have derived from a common ancestor), requiring an accurate interspecies mapping of cortical areas and features. To this end, I describe (i) a survey of connectivity and its measures across primate species, particularly retrograde tracing and diffusion tractography, (ii) a morphometric analysis of cognitive …


Synthetic Gene Circuits For Self-Regulating And Temporal Delivery Of Anti-Inflammatory Biologic Drugs In Engineered Tissues, Lara Pferdehirt May 2021

Synthetic Gene Circuits For Self-Regulating And Temporal Delivery Of Anti-Inflammatory Biologic Drugs In Engineered Tissues, Lara Pferdehirt

McKelvey School of Engineering Theses & Dissertations

The recent advances in the fields of synthetic biology and genome engineering open up new possibilities for creating cell-based therapies. We combined these tools to target repair of articular cartilage, a tissue that lacks a natural ability to regenerate, in the presence of arthritic diseases. To this end, we developed cell-based therapies that harness disease pathways and the unique properties of articular cartilage for prescribed, localized, and controlled delivery of biologics, creating the next generation of cell therapies and new classes of synthetic circuits. We created tissue engineered cartilage from murine induced pluripotent stem cells that had the ability to …


Neural Dynamics, Adaptive Computations, And Sensory Invariance In An Olfactory System, Srinath Nizampatnam Jan 2021

Neural Dynamics, Adaptive Computations, And Sensory Invariance In An Olfactory System, Srinath Nizampatnam

McKelvey School of Engineering Theses & Dissertations

Sensory stimuli evoke spiking activities that are patterned across neurons and time in the early processing stages of olfactory systems. What features of these spatiotemporal neural response patterns encode stimulus-specific information (i.e. ‘neural code’), and how they are translated to generate behavioral output are fundamental questions in systems neuroscience. The objective of this dissertation is to examine this issue in the locust olfactory system. In the locust antennal lobe (analogous to the vertebrate olfactory bulb), a neural circuit directly downstream to the olfactory sensory neurons, even simple stimuli evoke neural responses that are complex and dynamic. We found each odorant …


Differentiating Human Embryonic Stem Cells In Micropatterns To Study Cell Fate Specification And Morphogenetic Events During Gastrulation, Kyaw Thu Minn Jan 2021

Differentiating Human Embryonic Stem Cells In Micropatterns To Study Cell Fate Specification And Morphogenetic Events During Gastrulation, Kyaw Thu Minn

McKelvey School of Engineering Theses & Dissertations

During mammalian embryogenesis, the first major lineage segregation occurs when embryonic epiblast, and extraembryonic trophectoderm and hypoblast arise in the blastocyst. In the next fundamental and conserved phase of animal embryogenesis known as gastrulation, extraembryonic cells provide signals to epiblast to instruct embryonic patterning, and epiblast gives rise to germ layers ectoderm, mesoderm, and endoderm, that will establish all embryonic tissues. Proper specification and morphogenesis of germ layers during gastrulation is vital for correct embryonic development. Due to ethical and legal restrictions limiting human embryo studies, human gastrulation is poorly understood. Our knowledge of human gastrulation has largely been derived …


Uncovering The Roles And Evolved Sequence Grammar Of Hypervariable Intrinsically Disordered Proteins In Bacterial Cell Division, Megan Cohan Jan 2021

Uncovering The Roles And Evolved Sequence Grammar Of Hypervariable Intrinsically Disordered Proteins In Bacterial Cell Division, Megan Cohan

McKelvey School of Engineering Theses & Dissertations

Across all domains of life, a defining hallmark of the onset of cell division is the formation of a cytokinetic ring at the center of the cell. Cell division is a tightly controlled process that involves various regulatory factors that modulate the assembly of the cytokinetic ring. In rod-shaped bacteria, the ring is termed the Z-ring after the protein FtsZ, which is foundational to ring formation and is the bacterial homolog of tubulin. Like tubulin, FtsZ is an assembling GTPase, where GTP binding promotes the cooperative assembly into FtsZ polymers that laterally associate to form bundles. While the GTPase domain …


Evaluating The Structural And Functional Consequences Of Traumatic Joint Injury And Their Relation To Nf-Κb In A Non-Invasive Model Of Post-Traumatic Osteoarthritis, Ian Matthew Berke Jan 2021

Evaluating The Structural And Functional Consequences Of Traumatic Joint Injury And Their Relation To Nf-Κb In A Non-Invasive Model Of Post-Traumatic Osteoarthritis, Ian Matthew Berke

McKelvey School of Engineering Theses & Dissertations

Post-traumatic osteoarthritis (PTOA) is a painful and debilitating disease of the synovial joint, characterized by degenerative changes to various joint tissues following traumatic joint injury. While several risk factors have been identified in the symptomatic progression of PTOA following injury, inflammation and NF-κB mediated changes are believed to significantly contribute to symptomatic joint dysfunction and pain. However, the temporal presentation of these pro-inflammatory signals following clinically relevant injury and their relationship to the development of symptomatic disease have not been thoroughly investigated. Therefore, there exists a critical need to better understand how these early inflammatory events following injury may contribute …


Neural Coding And Organization Principles In The Drosophila Olfactory System, Haoyang Rong Jan 2021

Neural Coding And Organization Principles In The Drosophila Olfactory System, Haoyang Rong

McKelvey School of Engineering Theses & Dissertations

Sensory systems receive and process external stimuli to allow an organism to perceive and react to the environment. How is sensory information subsequently represented, transformed, and interpreted in the neural system? In this dissertation, I have investigated this fundamental question using the fruit fly (Drosophila melanogaster) olfactory system.Chemical cues are transduced into neural signals in the insect antenna by the olfactory receptor neurons (ORNs). The ORNs send their axons to the antennal lobe (AL), with each ORN type innervating a specific neuropil (glomerulus), where they synapse onto excitatory and inhibitory projection neurons (ePNs and iPNs). The ePNs project their axons …