Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Electronic And Local Structures Of Pt-Based Bimetallic Alloy And Core-Shell Systems, Jiatang Chen Aug 2020

Electronic And Local Structures Of Pt-Based Bimetallic Alloy And Core-Shell Systems, Jiatang Chen

Electronic Thesis and Dissertation Repository

This thesis investigates the electronic structure of Pt for catalysis applications. The importance of the Pt 5d band is discussed in terms of the bonding capability of Pt. The oxygen reduction reaction in proton exchange membrane fuel cells is chosen as the catalytic reaction model to illustrate the effect of Pt 5d states on Pt-O interaction. Pt-based bimetallic systems are introduced as a solution for the high price and limited resources of Pt. Despite lower usage of Pt, the tuning capability to optimize the Pt 5d band in bimetallic catalysts is supposed to provide superior catalytic activity. Advanced synchrotron X-ray …


High-Pressure Studies On The Transition From Red Phosphorus To Black Phosphorus, Heng Xiang Dec 2019

High-Pressure Studies On The Transition From Red Phosphorus To Black Phosphorus, Heng Xiang

Electronic Thesis and Dissertation Repository

Black phosphorus (BP) is a promising material in many research fields. However, the transition process from amorphous red phosphorus (ARP) is elusive and hence hinders large scale synthesis and applications. This work describes the application of the high-pressure method to study the transition process from ARP to BP.

In this thesis, the following three objectives were achieved: (1) to understand the mechanism of the transition, (2) to facilitate the synthesis of BP by taking the advantage of less pure ARP, (3) to propose new methods of synthesizing BP-based materials, such as the moderately oxidized BP and the black phosphorus/ amorphous …


Progress Toward Durable Icephobic Materials, Matthew J. Coady Oct 2019

Progress Toward Durable Icephobic Materials, Matthew J. Coady

Electronic Thesis and Dissertation Repository

Ice accumulation is a major engineering challenge in many fields including aerospace, power generation, transportation, and infrastructure. A variety of solutions are being researched to address this challenge. Perhaps the most promising method of combating ice accumulation is by applying coatings with low values of interfacial ice adhesion strength, τice. Icephobic materials are those with ice adhesion below 100 kPa, and it has been shown that passive delamination can occur on surfaces with τice below 20 kPa. While various low adhesion surfaces have been prepared, durability concerns pervade applications where surfaces experience repeated icing or freeze-thaw cycles, …


Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince Feb 2019

Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince

Electronic Thesis and Dissertation Repository

Hydrogels are 3-dimensional crosslinked polymer networks that can absorb significant amounts of water. The physical properties associated with hydrogels affords them resemblance to biological tissues making them good candidates for biomedical applications. Many pharmaceuticals, specifically non-steroidal anti-inflammatory drugs (NSAIDs), have poor aqueous solubility, which limits their bioavailability and efficacy. People suffering from chronic osteoarthritis (OA) are required to frequently take large doses to mitigate pain, which can lead to serious side effects. Hydrogels are good strategies to deliver NSAIDs via articular injection because they can form solid gels in situ. This thesis describes the synthesis, formulation, mechanical testing, in …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari Apr 2016

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari

Electronic Thesis and Dissertation Repository

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO2), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrifical hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO2 at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a …


Exploring The Chemistry Of Phosphorus For Photopolymer Applications, Ryan Guterman May 2015

Exploring The Chemistry Of Phosphorus For Photopolymer Applications, Ryan Guterman

Electronic Thesis and Dissertation Repository

Prior to this thesis, phosphorus-containing polymers and photopolymerization represented two distinct, non-overlapping fields of study. This thesis examined the prospect of combining these two approaches to create a system possessing the benefits of both techniques. By exploiting the chemistry of phosphorus, and using photopolymerization as a fabrication method, new materials were developed and assessed for their use in various applications.

Among the many phosphorus compounds that may be used in polymer science, phosphonium salts and primary phosphines were of specific focus. First, highly fluorinated phosphonium monomers were developed to create photopolymerized hydrophobic surfaces. A structure-activity relationship was established, as both …


Solid-State Nuclear Magnetic Resonance Spectroscopy Of Unreceptive Quadrupolar Nuclei In Inorganic Materials, Andre Sutrisno Apr 2012

Solid-State Nuclear Magnetic Resonance Spectroscopy Of Unreceptive Quadrupolar Nuclei In Inorganic Materials, Andre Sutrisno

Electronic Thesis and Dissertation Repository

Preparation and characterization of inorganic materials is a crucial practice because understanding the relationship between structure and property is important for improving current performance and developing novel materials. Many metal centers in technologically and industrially important materials are unreceptive low-γ quadrupolar nuclei (i.e., possessing low natural abundance, low NMR frequencies and large quadrupole moments) and they usually give rise to very broad NMR resonances and low signal-to-noise ratios, making it difficult to acquire their solid-state NMR spectra. This thesis focuses on the characterization of inorganic materials using solid-state NMR (SSNMR) spectroscopy at very high magnetic field of …