Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

2017

Applied sciences

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Computer Simulation Of Pore Migration Due To Temperature Gradients In Nuclear Oxide Fuel, Ian Wayne Vance May 2017

Computer Simulation Of Pore Migration Due To Temperature Gradients In Nuclear Oxide Fuel, Ian Wayne Vance

Graduate Theses and Dissertations

A phase-field simulation model is being presented that captures the thermal-gradient-driven migration of pores in oxide fuel associated with fuel restructuring. The model utilizes a Cahn-Hilliard equation supplemented with an advection term to describe the vapor transport of fuel material through the pore interior due to gradients in vapor pressure. In addition, the model also captures changes in a migrating pores’ morphology. Simulations demonstrate that the model successfully predicts pore migration towards the hottest portion of the fuel, the centerline. The simulations also demonstrate changes in pore shape that are in agreement with previous experimental observations. Initially isotropic pores are …


Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani May 2017

Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani

Graduate Theses and Dissertations

The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, <100>, <110>, <111> and <321>, and dislocation density behind the shock wave …