Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

Theses/Dissertations

2018

Institution
Keyword
Publication

Articles 1 - 30 of 56

Full-Text Articles in Engineering

Numerical Simulations Of Premixed Flames Of Multi Component Fuels/Air Mixtures And Their Applications, Essa Kh I J Salem Dec 2018

Numerical Simulations Of Premixed Flames Of Multi Component Fuels/Air Mixtures And Their Applications, Essa Kh I J Salem

Theses and Dissertations--Mechanical Engineering

Combustion has been used for a long time as a means of energy extraction. However, in the recent years there has been further increase in air pollution, through pollutants such as nitrogen oxides, acid rain etc. To solve this problem, there is a need to reduce carbon and nitrogen oxides through lean burning, fuel dilution and usage of bi-product fuel gases. A numerical analysis has been carried out to investigate the effectiveness of several reduced mechanisms, in terms of computational time and accuracy. The cases were tested for the combustion of hydrocarbons diluted with hydrogen, syngas, and bi-product fuel in …


Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke Dec 2018

Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke

Civil Engineering ETDs

Ductile failure of metals has been the focus of research efforts within academia and industry for many years since it is tremendously important for understanding the failure of structures under extreme loading conditions. However, limited research has been dedicated to elevated temperature ductile failure, which is critical for evaluating catastrophic events such as industrial, structural or shipping vessel fires. A detailed investigation was conducted on the structural response of Duplex Stainless Steel at elevated temperatures. The temperature dependence of elastic modulus, yield strength, ultimate strength, and ductility was measured up to 1000°C and a continuum damage plasticity model was developed. …


Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath Dec 2018

Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath

Electronic Theses and Dissertations

Laser-powder bed fusion (L-PBF) is an additive manufacturing technique for fabricating metal components with complex design and customized features. However, only a limited number of materials have been widely studied using L-PBF. AISI 420 stainless steel, an alloy with a useful combination of high strength, hardness, and corrosion resistance, is an example of one such material where few L-PBF investigations have emerged to date. In this dissertation, L-PBF experiments were conducted using 420 stainless steel powders to understand the effects of chemical composition, particle size distribution and processing parameters on ensuing physical, mechanical and corrosion properties and microstructure in comparison …


Liquid-To-Liquid Low Grade Waste Heat Recovery Using A Two-Channel Loop, Waleed Farwana Dec 2018

Liquid-To-Liquid Low Grade Waste Heat Recovery Using A Two-Channel Loop, Waleed Farwana

Masters Theses

The use of thermoelectric generators (TEGs) for producing electric energy from low grade “waste heat” has been theorized to provide a sustainable and low-cost energy source for electric power plants. The purpose of this study is to model and experimentally validate a TEG device that takes advantage of low grade waste heat (approximately 100-150 degrees Celsius) in liquid form in order to generate power that can be used for various applications in the surrounding environment. This research aims to demonstrate that optimized TEG designs bear the potential to compete with other methods of low grade waste heat energy harvesting in …


Optimization Of Analytical Inverse Heat Transfer Recovery Solution, Nathan Schick Dec 2018

Optimization Of Analytical Inverse Heat Transfer Recovery Solution, Nathan Schick

Masters Theses

This thesis describes the different methods used when trying to solve inverse heat transfer problems, particularly those involving recovering heat flux. There are currently several techniques to measure the temperature history in an object subjected to heat transfer using various temperature sensors, however these types of sensors are gradually being replaced by Temperature Sensitive Paints (TSP), a technique that is more accurate and provides a better spatial resolution. TSP is a polymer that is applied on a base object. Changes in temperature in the polymer result in variations of the luminescence intensity in the paint. These variations can be captured …


Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston Dec 2018

Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston

Mechanical Engineering Undergraduate Honors Theses

Throughout the process of steel making, certain grades of steel are a higher risk for defects caused by the inability to quickly diffuse hydrogen through the steel when cooled to room temperature at a normal rate based on the ambient air temperature. To reduce the hydrogen flaking defects that are caused due to hydrogen entrapment in the steel, the process of slow cooling is utilized. This process reduces the cooling rate of steel bars by keeping them at a higher temperature for extended periods and in turn gives the hydrogen a chance to fully dissipate from the steel. In many …


Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the …


Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess Dec 2018

Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess

Master's Theses

Current insulation solutions across multiple industries, especially the commercial sector, can be bulky and ineffective when considering their volume. Aerogels are excellent insulators, exhibiting low thermal conductivities and low densities with a porosity of around 95%. Such characteristics make aerogels effective in decreasing conductive heat transfer within a solid. These requirements are crucial for aerospace and spaceflight applications, where sensitive components exist among extreme temperature environments. When implemented into insulation applications, aerogel can perform better than existing technology while using less material, which limits the amount of volume allocated for insulation. The application of these materials into composites can result …


Portable Thermoelectric Refrigerator, Cassandra Danielle Beck, Ryan Theodore Gelinas, Joshua Michael Dimaggio, Zachary David Wilson Dec 2018

Portable Thermoelectric Refrigerator, Cassandra Danielle Beck, Ryan Theodore Gelinas, Joshua Michael Dimaggio, Zachary David Wilson

Mechanical Engineering

This project created a versatile thermoelectric refrigerator that can be used via a wall outlet. The product is durable and effective. The refrigerator is functional in any ambient temperature, and uses thermoelectric cooling, and work from a standard 120V power outlet. By understanding existing products’ limitations and strengths, this project produced a product that outperforms what’s currently on the market. Many of the existing products’ operating temperature is dependent on the ambient temperature of the surroundings, which is a large drawback. Additionally, most of them take a long time to reach their lowest temperature, around 3 hours. One team member, …


Experimental Investigation Of The Heat Source Orientation On The Transient Flow And Thermal Behaviour Of Phase Change Material During Phase Transition, Steven Jevnikar Nov 2018

Experimental Investigation Of The Heat Source Orientation On The Transient Flow And Thermal Behaviour Of Phase Change Material During Phase Transition, Steven Jevnikar

Electronic Thesis and Dissertation Repository

The present study reports the characterization of transient flow and transient thermal behavior of phase change material (PCM) during solid-liquid phase change (melting) through experimental investigation. Two specific aspects of the current work, both important in the field of latent heat thermal energy storage, are to investigate the influence of the flow behavior within liquid PCM on the melting and heat transfer processes, and the impact of heat source orientation on the underlying melting and heat transfer processes. A relationship between heat source orientation and the Nusselt number was discussed. The results show that the fluid velocity is critical for …


A Systematic Investigation Of Condensation Heat Transfer Using Asymmetric Micro-Scale Surfaces, Emily Brown Nov 2018

A Systematic Investigation Of Condensation Heat Transfer Using Asymmetric Micro-Scale Surfaces, Emily Brown

LSU Master's Theses

Asymmetric surfaces been shown to inducing unidirectional motion in the Leidenfrost regime; however, very minimal research has been conducted to investigate whether these surface can enhance condensation through the same means. The investigation of heat transfer of ratchets in condensation is a relatively untapped area of study, specifically ratchets with superhydrophobic properties. Anticipated difficulty lies in creating surfaces features or coatings that retain the ratchets and can adequately sustain optimal wetting state of Cassie-Baxter required to improve heat transfer performance during condensation. This study serves to investigate whether ratchets are a feasible surface feature to enhance condensation heat transfer. First, …


Computational Exploration Of Flash-Boiling Internal Flow And Near-Nozzle Spray, Sampath K. Rachakonda Oct 2018

Computational Exploration Of Flash-Boiling Internal Flow And Near-Nozzle Spray, Sampath K. Rachakonda

Doctoral Dissertations

Gasoline engines operating under the principle of direct injection are susceptible to flash-boiling due to superheated nature of the fuel and the sub-atmospheric in-cylinder pressures during injection. A review of the literature on flash-boiling sprays shows that a majority of the studies have focused on the far-field regions of the spray, with limited attention given to understanding the influences of the injector geometry and the near-nozzle regions of the spray. Modeling the internal nozzle flow and the primary atomization, on which the far-field spray depends, is a challenge. This thesis, therefore, is aimed at understanding the complex flow through a …


Large Eddy Simulations Of Vertical Jets In Crossflow, Pranaya Pokharel Oct 2018

Large Eddy Simulations Of Vertical Jets In Crossflow, Pranaya Pokharel

LSU Doctoral Dissertations

Jets in crossflow (JICF) have applications ranging from oil spill to film cooling of turbine blades. Hence, an understanding of the flow physics is important. The majority of the research has been conducted for low velocity ratios between jet and crossflow with round jets. JICF is demonstrated to behave differently for high velocity ratios and different jet shapes. Circular and rectangular jets are commonly used in aircraft applications. Current study focuses on high velocity ratio JICF issuing from both circular and rectangular exit.

For simulating JICF, an in house code “Chem3D” is used with Large Eddy Simulation (LES) to model …


Combustion Dynamics And Heat Transfer In An Ultra Compact Combustor, Brian T. Bohan Sep 2018

Combustion Dynamics And Heat Transfer In An Ultra Compact Combustor, Brian T. Bohan

Theses and Dissertations

The Ultra Compact Combustor (UCC) is an innovative combustion system alternative to a traditional turbine engine burner with the potential to improve engine efficiency with a reduced combustor volume. The UCC shortens the axial length of the combustor, and therefore reduces engine weight, by burning in an annulus and swirling the reactants in the circumferential direction. These length and weight improvements can directly lead to an increased thrust-to-weight rating of the engine. The present research included five objectives which advanced the UCC concept on four fronts; cooling UCC turbine vanes, advanced computational modeling of UCC systems, system air split control …


Micro Combustion Of Primary Reference Fuels In Narrow Heated Channels, Veerendra Naralasetti Aug 2018

Micro Combustion Of Primary Reference Fuels In Narrow Heated Channels, Veerendra Naralasetti

LSU Master's Theses

Conventional fuel testing machines like CFR engines require large quantities of fuel. The current study seeks to overcome this limitation by introducing an alternative method using a microscale combustion reactor which consumes relatively small amounts of fuel (100-250 ml). For this reason, Primary Reference Fuels (PRF’s: volumetric mixtures of n-heptane and iso-octane) which are simple surrogates of gasoline are selected to test using micro reactor. The primary goal is to determine the effectiveness of using the micro reactor setup to differentiate fuels of different octane number. Experiments with stoichiometric PRF/air mixtures are performed inside a cylindrical quartz tube of 1mm …


Selecting The Most Effective Energy Modeling Tool Based On A Project Requirement, Sodiq Akande Aug 2018

Selecting The Most Effective Energy Modeling Tool Based On A Project Requirement, Sodiq Akande

Electronic Theses and Dissertations

Building energy usage can be derived and controlled by performing building energy modeling. BEM can be performed using numerous software tools such as DesignBuilder, OpenStudio, EnergyPlus etc. These modeling tools can be sorted into three different modeling categories: Black-box, Gray-box and White-box. It is important for a modeler to be able to quickly select the proper tool from the proper category to meet the need of the project. To validate the method of categorizing tools, the three models generated using tools from each category and the modeling outputs required were compared. Each model was designed to estimate the amount of …


Fundamentals Of Applied Smouldering Combustion, Marco Zanoni Jun 2018

Fundamentals Of Applied Smouldering Combustion, Marco Zanoni

Electronic Thesis and Dissertation Repository

Smouldering combustion is defined as a flameless oxidation reaction occurring on the surface of the condensed phase (i.e., solid or liquid). Traditional research on smouldering was related to economic damages, fire risk, and death, due to the release of toxic gases and slow propagation rates. Recently, smouldering has been applied as an intentional, engineering technology (e.g., waste and contaminant destruction). Smouldering involves the transport of heat, mass, and momentum in the solid and fluid phases along with different chemical reactions. Therefore, numerical models are essential for the fundamental understanding of the process. Smouldering models either neglected heat transfer between phases …


Driver Cooling System, Joseph Fatin Bolous, Jake Donald Deboer, Alvin Theodore Lau Jun 2018

Driver Cooling System, Joseph Fatin Bolous, Jake Donald Deboer, Alvin Theodore Lau

Mechanical Engineering

This document provides our Final Design Review (FDR) for the Driver Cooling System Project. It contains our background research, which includes current product research, technical research, and information on our sponsor’s needs as a customer as well our manufacturing process, test results, and final design. We created a problem statement to define the scope of the project, discuss sponsor and consumer needs and wants, and technical specifications. After brainstorming, we ultimately selected a thermoelectric cooling system (TEC) after presenting our Preliminary Design Report and Critical Design Report. We built the final prototype, as can be seen in the manufacturing plan, …


3-Dimensional Automated Heat Flux Calibration Device, Victor Raul Chacon, David Madison Morrisset, Alex Michael Schnorr, Kevin Scott Jun 2018

3-Dimensional Automated Heat Flux Calibration Device, Victor Raul Chacon, David Madison Morrisset, Alex Michael Schnorr, Kevin Scott

Mechanical Engineering

This document aims to describe the problems in current radiant heat source heat flux calibration techniques and the approach our team took to solve them through automation. The following sections outline the basic premise of the problem we addressed and who our end product benefited. The proceeding sections addresses the research that we have performed regarding heat flux measurements and automation. This research includes current solutions – mostly partial solutions for problems that are similar but not exactly like ours. Following the background research, we define objectives, with specific details that outline how we evaluated different possible solutions, and how …


High Performance Thermal Insulation: Silica Aerogels In Construction Technology, Matthew Giarrusso Jun 2018

High Performance Thermal Insulation: Silica Aerogels In Construction Technology, Matthew Giarrusso

Honors Theses

The United States is a world leader in the production and expenditure of energy, accounting for 18% of the total global energy consumption in 2016, 40% of which was used for the heating, cooling, and lighting of commercial and residential buildings. Currently, traditional air-based insulation products are being used in thicker and more numerous layers in an attempt to keep up with contemporary codes and standards. One promising alternative to traditional insulation is silica aerogel. With a remarkably low density and thermal conductivity, silica aerogel could save energy, space, and weight in new and retrofit structures. Silica aerogels are currently …


Thermal Modelling And Validation Of Heat Profiles In An Rf Plasma Micro-Thruster, Alec Sean Henken Jun 2018

Thermal Modelling And Validation Of Heat Profiles In An Rf Plasma Micro-Thruster, Alec Sean Henken

Master's Theses

The need and demand for propulsion devices on nanosatellites has grown over the last decade due to interest in expanding nanosatellite mission abilities, such as attitude control, station-keeping, and collision avoidance. One potential micro-propulsion device suitable for nanosatellites is an electrothermal plasma thruster called Pocket Rocket. Pocket Rocket is a low-power, low-cost propulsion platform specifically designed for use in nanosatellites such as CubeSats. Due to difficulties associated with integrating propulsion devices onto spacecraft such as volume constraints and heat dissipation limitations, a characterization of the heat generation and heat transfer properties of Pocket Rocket is necessary. Several heat-transfer models of …


Upgrading The Sr-30 Miniature Turbojet For Adaptable Exhaust, Shannon Ferreira, Erin Mcmurchie, Peter Pratt Jun 2018

Upgrading The Sr-30 Miniature Turbojet For Adaptable Exhaust, Shannon Ferreira, Erin Mcmurchie, Peter Pratt

Mechanical Engineering

The California Polytechnic State University, San Luis Obispo (Cal Poly, SLO) Aerospace Department is requesting a variable nozzle adaptation for their SR-30 turbojet engine. The nozzle is intended for laboratory use in sophomore and junior level courses to supplement instruction on the effects that exhaust behavior has on the performance of propulsion technologies. Topics covered during a performance study of the SR-30 turbojet engine will include, but are not limited to: Brayton Cycle analysis, turbojet operation in ideal and non-ideal test conditions, instrumentation limitations, and basic nozzle operation. The SR-30 turbojet engine is similar in design and operation to engines …


Heat Flow Characterization Of Speakers, Sabrina M. Gough, Lydia K. Hedge, Nicolas M. Jones Jun 2018

Heat Flow Characterization Of Speakers, Sabrina M. Gough, Lydia K. Hedge, Nicolas M. Jones

Mechanical Engineering

Statement of Confidentiality: The complete senior project report was submitted to the project advisor and sponsor. The results of this project are of a confidential nature and will not be published at this time.


Transient Heat Storage Systems, Ian M. Sweeney, Brock M. Johnson, Todd K. Lundberg Jun 2018

Transient Heat Storage Systems, Ian M. Sweeney, Brock M. Johnson, Todd K. Lundberg

Mechanical Engineering

Phase change materials (PCM) have many applications in transient cooling systems, including those with high transient heat loads and low duty cycles. These materials allow a system to remain within a narrow temperature range with a relatively low weight compared to conventional heat sinks or high-power cooling systems. This senior capstone project includes the design of a PCM based thermal energy storage system to integrate into an existing cooling loop, as well as a determination of viable PCM’s for the application. This report contains the necessary information to build the test apparatus.


Finite-Difference Modeling Of The Batch Process Smoldering Combustion Of Wastewater, Laura H. Kawashiri Jun 2018

Finite-Difference Modeling Of The Batch Process Smoldering Combustion Of Wastewater, Laura H. Kawashiri

Master's Theses

A MATLAB model was developed for the smoldering combustion of wastewater in the context of a decentralized residential wastewater treatment appliance. Data from a batch process sewage smoldering experiment was simulated using implicit finite-difference approximations, assuming one-dimensional transient conductive heat transfer. The time-dependent temperature profiles within the column represented the main parameters of interest and were used to verify recoverable heat energy estimations. Given that the modeling method used for this thesis represents a unique approach, the assumptions and limitations of this model are thoroughly described in the context of reproducing results for other smoldering setups. A lack of convergence …


On The Reduction Of The Driving Force In Shear-Driven Flows, Sakib Shadman Apr 2018

On The Reduction Of The Driving Force In Shear-Driven Flows, Sakib Shadman

Electronic Thesis and Dissertation Repository

In shear-driven flows, an external driving force is needed to maintain the relative movement of horizontal plates. This thesis presents a systematic analysis on using spatially periodic heating and grooved surfaces to control this force. It is found that the use of periodic heating creates a buoyancy-driven effect that always reduces this force. The use of proper heating may even lead to the complete elimination of this force. It is further found that the use of isothermal grooved surfaces always enhances flow resistance, resulting in an increase of this force. When grooves and heating are applied together, their interaction induces …


Computational Methods For Modeling Multicomponent Droplet Vaporization, Alanna Y. Cooney Apr 2018

Computational Methods For Modeling Multicomponent Droplet Vaporization, Alanna Y. Cooney

Master's Theses (2009 -)

Computational fluid dynamics (CFD) models for combustion of multicomponent hydrocarbon fuels must often prioritize computational efficiency over model complexity, leading to oversimplifying assumptions in the sub-models for droplet vaporization and chemical kinetics. Therefore, a computationally efficient hybrid droplet vaporization-chemical surrogate approach has been developed which emulates both the physical and chemical properties of a multicomponent fuel. For the droplet vaporization/physical portion of the hybrid, a new solution method is presented called the Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM) with delumping which accurately solves for the evolution of every discrete species in a vaporizing multicomponent fuel droplet with the computational …


Multicomponent Working Fluids In Organic Rankine Cycle Evaporators, Jennifer Fromm Mar 2018

Multicomponent Working Fluids In Organic Rankine Cycle Evaporators, Jennifer Fromm

Honors Theses

Organic Rankine cycles are a promising technology to convert waste heat energy into usable mechanical or electric power, giving them the potential to reduce fossil fuel emissions generated by traditional energy generation. The heat exchangers of these devices are of particular interest, as maximizing energy extraction from these free heat sources will increase net electrical power output. For this project I created a model to predict the effects of mixture working fluids on the evaporator performance of an organic Rankine cycle generator for a wide range of waste heat source temperatures. This model combines empirically derived heat exchanger performance parameters …


Heat Transfer Vest, Nicholas Forsgaard Jan 2018

Heat Transfer Vest, Nicholas Forsgaard

All Undergraduate Projects

The purpose of this report is to document the progression of the authors senior project. . The of that project was the research of Liquid Cooled Garment (LCG) technology, the generation of a novel LCG prototype and the testing of that prototype relative to a commercial benchmark. As such, this report is a complete narrative of the of these tasks, their execution and the underlying assumptions and commentary. The motivation for this report is to satisfy the capstone requirements of the MET program at CWU by documenting the Senior Project and its subordinate tasks. First, the student designed a LCG …


Spacecraft Fire Safety Research: Combustion Of Lithium-Ion Batteries To Predict Fire Scenarios, Elisabeth Meyer Jan 2018

Spacecraft Fire Safety Research: Combustion Of Lithium-Ion Batteries To Predict Fire Scenarios, Elisabeth Meyer

Williams Honors College, Honors Research Projects

The purpose of this project was to research characteristics of a Lithium-ion battery fire to determine if trends exist in measured fire characteristics that can help predict different fire scenarios. These experiments will ultimately aid in developing an alarm threshold for a spacecraft smoke detector, specifically for Orion, a new, multi-purpose crew vehicle under development by NASA. Orion is the next-generation of spacecraft designed to replace the space shuttle and will play an important role in NASA’s journey to Mars.

In the experiments performed, Lithium-ion batteries were placed in a test chamber and ignited while smoke concentration was measured, simulating …