Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Non-Isothermal Cool Flames In Unstirred Static Reactors: A Compressible Model With Global Kinetics, Michael R. Foster, Howard Pearlman Jan 2012

Non-Isothermal Cool Flames In Unstirred Static Reactors: A Compressible Model With Global Kinetics, Michael R. Foster, Howard Pearlman

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

A compressible model is developed with kinetics based on the Wang–Mou five-step global kinetic scheme and used to evaluate the temperature, concentration, and velocity fields characteristic of low temperature combustion in unstirred static reactors. This work relaxes the assumption of small exothermicity that enabled prior studies to employ the Boussinesq approximation, valid for cases where BT << 1, i.e., slow reactions and cool flames. In this study, the range of validity of the model is extended to cases with large temperature excursions, including multi-stage ignition. For the weakly exothermic cases considered, including modes of slow reaction and cool flames, the Boussinesq approximation is completely adequate. However, it overpredicts the density change and underpredicts the ignition delay time for high-temperature ignitions. Qualitative comparison with experimental results acquired at microgravity conditions are also discussed.


The Role Of Diffusive Transport On Low And Intermediate Temperature Hydrocarbon Oxidation: Closed Reactor Experiments Using Equimolar N-Butane + Oxygen Premixtures At Reduced-Gravity, Howard Pearlman, Michael R. Foster Jan 2008

The Role Of Diffusive Transport On Low And Intermediate Temperature Hydrocarbon Oxidation: Closed Reactor Experiments Using Equimolar N-Butane + Oxygen Premixtures At Reduced-Gravity, Howard Pearlman, Michael R. Foster

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Experiments were conducted in a closed, spherical reactor aboard NASA's KC-135 reduced-gravity aircraft using an equimolar n-C4H10 + 0 2 premixture ( Le = 1.3) at subatmospheric · pressures to compliment model predictions and further explore the reactive-diffusive structure of cool flames and ignitions. The pressure and radial temperature histories were recorded and analyzed for different initial conditions. In addition, the visible light emission from excited formaldehyde was recorded using an intensified video camera and was observed to be radially symmetric in all cases. Unexpectedly, however, the measured temperature distributions during (and after the passage of) the cool flames and …


The Role Of Diffusive Transport On Low And Intermediate Temperature Hydrocarbon Oxidation: Numerical Simulations Using The Wang-Mou Mechanism, Howard Pearlman, Michael R. Foster Jan 2008

The Role Of Diffusive Transport On Low And Intermediate Temperature Hydrocarbon Oxidation: Numerical Simulations Using The Wang-Mou Mechanism, Howard Pearlman, Michael R. Foster

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

The spatio-temporal temperature and species concentration distributions associated with low and intermediate temperature hydrocarbon oxidation are computed using a global thermo kinetic scheme augmented with diffusive transport. The scheme used for the computations was proposed by Wang and Mou and is extended to include diffusion of species and heat. The conservation equations for species and energy are then derived and solved for a one-dimensional and an axisymmetric, spherical domain for temperatures ranging from 540 to 660 Kat subatmospheric pressures. The predictions are then used to develop ignition diagrams for different Lewis ( Le) numbers. Increasing Le is found to promote …


Cool Flame Propagation Speeds, Michael R. Foster, Howard Pearlman Jan 2007

Cool Flame Propagation Speeds, Michael R. Foster, Howard Pearlman

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Cool flames are studied at reduced-gravity in a closed, unstirred, spherical reactor to minimize complexities associated with natural convection. Under such conditions, transport is controlled by diffusive fluxes and the flames are observed to propagate radially outward from the center of the reactor toward the wall. Intensified video records are obtained and analyzed to determine the flame radius as a function of time for different vessel temperatures (593–623 K) and initial pressures (55.2–81.4 kPa) using an equimolar (Ø = 5) propane-oxygen premixture. Polynomial-fits are applied to the data and differentiated to determine the cool flame propagation speeds. In nearly …


Cool Flames At Terrestrial, Partial, And Near-Zero Gravity, Michael R. Foster, Howard Pearlman Jan 2006

Cool Flames At Terrestrial, Partial, And Near-Zero Gravity, Michael R. Foster, Howard Pearlman

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Natural convection plays an important role in all terrestrial, Lunar, and Martian-based, unstirred, static reactor cool flame and low-temperature autoignitions, since the Rayleigh number (Ra) associated with the self-heating of the reaction exceeds the critical Ra (approximately 600) for onset of convection. At near-zero gravity, Ra < 600 can be achieved and the effects of convection suppressed. To systematically vary the Ra without varying the mixture stoichiometry, reactor pressure, or vessel size, cool flames are studied experimentally in a closed, unstirred, static reactor subject to different gravitational accelerations (terrestrial, 1g; Martian, 0.38g; Lunar, 0.16g; a n dr e - duced gravity, ∼10−2g). Representative results show the evolution of the visible light emission using an equimolar n-butane:oxygen premixture at temperatures ranging from 320 to 350 ◦C (593–623 K) at subatmospheric pressures. For representative reduced-gravity, spherically propagating cool flames, the flame radius based on the peak light intensity is plotted as a function of time and the flame radius (and speed) is calculated from a polynomial fit to data. A skeletal chemical kinetic Gray-Yang model developed previously for a one-dimensional, reactive– diffusive system by Fairlie and co-workers is extended to a two-dimensional axisymmetric, spherical geometry. The coupled species, energy, and momentum equations are solved numerically and the spatio-temporal variations in the temperature profiles are presented. A qualitative comparison is made with the experimental results.


Transient Heat Partition Factor For A Sliding Railcar Wheel, T C. Kennedy, C Plengsaard, Robert F. Harder Jan 2006

Transient Heat Partition Factor For A Sliding Railcar Wheel, T C. Kennedy, C Plengsaard, Robert F. Harder

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

During a wheel slide the frictional heat generated at the contact interface causes intense heating of the adjacent wheel material. If this material exceeds the austenitising temperature and then cools quickly enough, it can transform into martensite, which may ultimately crack and cause wheel failure. A knowledge of the distribution of the heat partitioned into the wheel and the rail and the resulting temperature fields is critical to developing designs to minimize these deleterious effects. A number of theoretical solutions have appeared in the literature to model the thermal aspects of this phenomenon. The objective of this investigation was to …


An Existing Global Heptane Mechanism Augmented With Diffusive Transport, Michael R. Foster, Howard Pearlman Jan 2005

An Existing Global Heptane Mechanism Augmented With Diffusive Transport, Michael R. Foster, Howard Pearlman

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

The couplings between diffusive transport and the temperature and species concentration distributions associated with low and intermediate temperature heptane oxidation are explored using an existing four-step heptane mechanism, tuned for elevated pressures. The energy and species concentration equations are augmented with diffusive fluxes for heat and species and solved numerically in a one-dimensional domain. The ignition delay times are also tabulated and compared with the zero-dimensional data reported in the literature.


Cool Flames In Propane-Oxygen Premixtures At Low And Intermediate Temperatures At Reduced-Gravity, Howard Pearlman, Michael R. Foster, Devrez Karabacak Jan 2003

Cool Flames In Propane-Oxygen Premixtures At Low And Intermediate Temperatures At Reduced-Gravity, Howard Pearlman, Michael R. Foster, Devrez Karabacak

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

No abstract provided.