Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

PDF

California Polytechnic State University, San Luis Obispo

Theses/Dissertations

Heat transfer

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Mmteg Heatsink Design, Peyton Nienaber, Kadin Feldis, Alec Savoye, Jack Waeschle Jun 2022

Mmteg Heatsink Design, Peyton Nienaber, Kadin Feldis, Alec Savoye, Jack Waeschle

Mechanical Engineering

In this document, Cal Poly Senior Design Team F16 presents a summary of its work developing a suitable heatsink for Gas Technology Institute’s Methane Mitigation Thermoelectric Generator. After several months of iterating between experimental testing and simulated heat transfer, a suitable prototype was selected for use in further refining simulation parameters. This was called the structural prototype and it allowed Team F16 to confirm several remaining unknowns relating to component thermal conductivity. All documentation of this process can be found in Preliminary, Critical, and Interim Design Review documents (PDR, CDR, IDR), included in this report. Having a realistic model …


Critical Radius Of Insulation, Maria N. Ambrose, Samuel J. Sayre, Travis W. Martin, Matt T. Sterling Dec 2019

Critical Radius Of Insulation, Maria N. Ambrose, Samuel J. Sayre, Travis W. Martin, Matt T. Sterling

Mechanical Engineering

The critical radius of insulation is a counterintuitive concept within the study of heat transfer. The theory states that adding insulation to a cylindrical or spherical object will increase the rate of heat loss rather than decrease it, if the radius (thickness) of the insulation is at its “critical” value. The Critical Radius of Insulation Senior Project is designed to demonstrate this phenomenon to Heat Transfer students via a portable apparatus. The concept will be demonstrated with a cylindrical object which is heated by way of a separate voltage source. Thermocouples will display the temperature of the cylinder while insulation …


Heat Flow Characterization Of Speakers, Sabrina M. Gough, Lydia K. Hedge, Nicolas M. Jones Jun 2018

Heat Flow Characterization Of Speakers, Sabrina M. Gough, Lydia K. Hedge, Nicolas M. Jones

Mechanical Engineering

Statement of Confidentiality: The complete senior project report was submitted to the project advisor and sponsor. The results of this project are of a confidential nature and will not be published at this time.


Fluid Analysis In Solar Heat Pipes, Ben Krumholz, Michael Agavo, William Dundon Jun 2016

Fluid Analysis In Solar Heat Pipes, Ben Krumholz, Michael Agavo, William Dundon

Mechanical Engineering

Evacuated tube solar collectors are efficient systems that use heat pipes to facilitate heat transfer. They use incoming solar radiation to heat water. Professor Mason Medizade tasked the team with choosing a component of the system to research and test its influence on system performance. The team investigated the working fluid that runs through the heat pipes. Distilled water, acetone, and ethanol at a range of fill volumes form 1 mL to 11 mL were tested. The team's goal was to find a volume for each fluid to maximize performance of the system. Performance was defined as average temperature rise …


Formula Sae Cooling System Design, Lisa Van Den Berg, Brandon Lofaro Jun 2014

Formula Sae Cooling System Design, Lisa Van Den Berg, Brandon Lofaro

Mechanical Engineering

The overall objective of this senior project is to develop, via testing and analysis, a guided process that will aid the Cal Poly Formula SAE team in designing their cooling system. More specifically, a set of designed tests will yield the results necessary in determining a combination of fan and radiator that will achieve appropriate cooling.

A test section that has the capability of interfacing with both the wind tunnel in the Thermal Science Lab and a radiator will be used to facilitate the necessary experiments. The wind tunnel is powered by fan controlled by a variable frequency drive that …


Design And Simulation Of Passive Thermal Management System For Lithium-Ion Battery Packs On An Unmanned Ground Vehicle, Kevin Kenneth Parsons Dec 2012

Design And Simulation Of Passive Thermal Management System For Lithium-Ion Battery Packs On An Unmanned Ground Vehicle, Kevin Kenneth Parsons

Master's Theses

The transient thermal response of a 15-cell, 48 volt, lithium-ion battery pack for an unmanned ground vehicle was simulated with ANSYS Fluent. Heat generation rates and specific heat capacity of a single cell were experimentally measured and used as input to the thermal model. A heat generation load was applied to each battery and natural convection film boundary conditions were applied to the exterior of the enclosure. The buoyancy-driven natural convection inside the enclosure was modeled along with the radiation heat transfer between internal components. The maximum temperature of the batteries reached 65.6 °C after 630 seconds of usage …


Silicon Wafer Temperature Distribution, Daniel Gonzalez, Nathan Jones, Dylan Justice Nov 2012

Silicon Wafer Temperature Distribution, Daniel Gonzalez, Nathan Jones, Dylan Justice

Mechanical Engineering

Applied Materials is a global company that designs equipment for use in the semiconductor manufacturing industry. The scope of this project covers process chambers used for depositing thin chemical films onto silicon wafers. These processes must take place in particularly specific environments– including extremely low pressures and high temperatures. One challenge engineers face when designing these processes is carefully controlling the thermal behavior of silicon wafers. Typically, behavior is predicted using time consuming and computationally expensive CFD simulations. We have been asked to address this issue with a simpler, faster model which will allow engineers to reduce the total number …


The Next Generation Router System Cooling Design, Garrett A. Glover Nov 2009

The Next Generation Router System Cooling Design, Garrett A. Glover

Master's Theses

Advancements in the networking and routing industry have created higher power electronic systems which dissipate large amounts of heat while cooling technology for these electronic systems has remained relatively unchanged. This report illustrates the development and testing of a hybrid liquid-air cooling system prototype implemented on Cisco’s 7609s router. Water was the working fluid through cold plates removing heat from line card components. The water was cooled by a compact liquid-air heat exchanger and circulated by two pumps. The testing results show that junction temperatures were maintained well below the 105°C limit for ambient conditions around 30°C at sea level. …