Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Reliability-Based Design And Acceptance Protocol For Driven Piles, Joseph Jabo Dec 2014

Reliability-Based Design And Acceptance Protocol For Driven Piles, Joseph Jabo

Graduate Theses and Dissertations

The current use of the Arkansas Standard Specifications for Highway Construction Manuals (2003, 2014) for driven pile foundations faces various limitations which result in designs of questionable reliability. These specifications are based on the Allowable Stress Design method (ASD), cover a wide range of uncertainties, do not take into account pile and soil types, and were developed for general use. To overcome these challenges it is deemed necessary to develop a new design and acceptance protocol for driven piles. This new protocol incorporates locally calibrated RLFD resistance factors for accounting for local design and construction experiences and practices, as well …


Calibration Of Resistance Factors For Driven Piles Using Static And Dynamic Tests, Deshinka A. Bostwick Dec 2014

Calibration Of Resistance Factors For Driven Piles Using Static And Dynamic Tests, Deshinka A. Bostwick

Graduate Theses and Dissertations

The field of geotechnical engineering has evolved from Allowable Stress Design (ASD) to Load Factor and Resistance Design (LRFD) which has led to a need to quantify the measures of uncertainty and the level of reliability associated with a project. The measures of uncertainty are quantified by load and resistance factors, while the level of reliability is driven by the amount of risk an owner is willing to take and is quantified by the reliability index. The load factors are defined through structural design codes, but the resistance factors have uncertainties that can be mitigated through reliability based design. The …


Field-Obtained Soil Water Characteristic Curves And Hydraulic Conductivity Functions, Elvis Ishimwe Aug 2014

Field-Obtained Soil Water Characteristic Curves And Hydraulic Conductivity Functions, Elvis Ishimwe

Graduate Theses and Dissertations

A compacted clay liner (test pad) was constructed and instrumented with volumetric water content and soil matric potential sensors to determine soil water characteristic curves (SWCC) and hydraulic conductivity (k) functions. Specifically, the compacted clay liner was subjected to an infiltration cycle during a sealed double ring infiltrometer (SDRI) test followed by a drying cycle. After the drying cycle, Shelby tube samples were collected from the compacted clay liner and flexible wall permeability (FWP) tests were conducted on sub-samples to determine the saturated hydraulic conductivity. Moreover, two computer programs (RETC and UNSAT-H) were utilized to model the SWCCs and k-functions …