Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Numerical Investigation Of Heat Generation And Accumulation Contributing To Elevated Temperature In Msw Landfills, Alborz Fathinezhad Nov 2022

Numerical Investigation Of Heat Generation And Accumulation Contributing To Elevated Temperature In Msw Landfills, Alborz Fathinezhad

LSU Doctoral Dissertations

Landfills are complex geostructures which contains organic and inorganic municipal, and in some cases industrial, wastes and are expected to remain operational for long times. Due to the complex nature of physical, chemical, biological, and thermal reactions that carry on within the depths of a landfill, unexpected incidents such as elevated temperatures could become inevitable. While uncommon to happen, elevated temperatures cause health and environmental issues such as odors, rapid settlements, slope instabilities. In addition, elevated temperatures can negatively impact engineered components in composite bottom liners, cover systems, leachate collection, and gas extraction and recovery systems.

Air intrusion into municipal …


Investigation Of Groundwater Depletion And Leveel Underseepage With Unstructured-Grid Modeling Approach, Ye-Hong Chen Apr 2022

Investigation Of Groundwater Depletion And Leveel Underseepage With Unstructured-Grid Modeling Approach, Ye-Hong Chen

LSU Doctoral Dissertations

Unstructured grid is a tessellation of geometric shapes in irregular patterns that provides flexibility in grid design for groundwater modeling. However, groundwater modeling is mostly developed with uniform grid tessellation and layer, which could simplify model structure or cause expensive computational costs in high-resolution simulations. Unstructured grid incorporates non-uniform horizontal and non-uniform vertical discretizations providing the capability to replicate complex hydrostratigraphy, capture geologic features that are crucial for groundwater flow simulation, and reduce computational costs while maintaining a high resolution for areas of interest. This study contains three parts to investigate unstructured-grid approach on constructing high-fidelity groundwater models, comparisons with …


Modeling Hydraulic Fracturing Initiation And Propagation In Porous Rock Formationsl, Chang Huang May 2021

Modeling Hydraulic Fracturing Initiation And Propagation In Porous Rock Formationsl, Chang Huang

LSU Doctoral Dissertations

Hydraulic fracturing has long been introduced to the oil and gas industry since the early nineteenth century for both reservoir characterization and reservoir stimulation. Despite the progress made in the last two decades, many challenges still have not been tackled regarding not only the propagation problem but also the initiation problem due to its complexity. The dissertation is divided into two stages, i.e., before and after fracture initiation. The first stage of the research aimed at improving the accuracy in solving the poro-mechanical response of wellbore during fluid injection before a tensile fracture occurs, which is crucial to determine the …


Estimation Of The Axial And Lateral Capacity Of Driven Piles From The Results Of Cone Penetration Test And Finite Element Analysis, Mohsen Amirmojahedi Apr 2020

Estimation Of The Axial And Lateral Capacity Of Driven Piles From The Results Of Cone Penetration Test And Finite Element Analysis, Mohsen Amirmojahedi

LSU Doctoral Dissertations

Piles play an important role in transportation and bridges. They are used to resist axial and lateral loads transferred to them from structures, earth pressures, incline loads, vehicles, etc. In this study, the capacity of piles for axial and lateral loads is investigated.

The ultimate axial capacity of piles can be estimated using different approaches including static pile load tests, dynamic load tests, statnamic load tests, and static analysis based on laboratory tests (effective and total stress approaches) or in-situ tests (SPT, CPT, etc.). For each approach, different researchers have proposed different solutions for different soils and different piles. Mostly, …


Investigation Of Subsurface Stratigraphy And Groundwater Dynamics In The Mississippi River Delta, An Li Oct 2019

Investigation Of Subsurface Stratigraphy And Groundwater Dynamics In The Mississippi River Delta, An Li

LSU Doctoral Dissertations

The Mississippi River Delta (MRD) is socioeconomically important to the state of Louisiana and the United States. Various types of land-water system data have been collected in the MRD. However, very few efforts have been made to utilize these datasets in modeling regional stratigraphy and groundwater dynamics in the MRD, especially for the upper 50 m of the depth. In this interval of depth, the Mississippi River and surrounding interdistributary bays intensively interact with the groundwater system. The lack of knowledge in regional stratigraphy and groundwater dynamics hinder an understanding of how hydrogeological setting affects processes such as surface-groundwater interaction, …


Field Performance And Cost Effectiveness Of Crack Sealing In Flexible And Composite Pavements, Momen Ragab Mousa Jun 2019

Field Performance And Cost Effectiveness Of Crack Sealing In Flexible And Composite Pavements, Momen Ragab Mousa

LSU Doctoral Dissertations

Surface cracking is one of the major surface distresses in asphalt concrete (AC) pavement, allowing water infiltration through the cracks, causing stripping in asphalt pavement layers, and weakening and deteriorating the base and/or subgrade. Its treatment, therefore, is one of the major activities in pavement preservation for many state DOTs. Among the various treatment methods currently available to preserve AC pavement with existing surface cracking are various forms of crack sealing. Crack sealing is not a common practice to Louisiana highways since the benefit of such treatment appears to be affected by the elevation of the ground water table. Studies …


Analytical And Numerical Modeling Of Cavity Expansion In Anisotropic Poroelastoplastic Soil, Kai Liu May 2019

Analytical And Numerical Modeling Of Cavity Expansion In Anisotropic Poroelastoplastic Soil, Kai Liu

LSU Doctoral Dissertations

Cavity expansion/contraction problems have attracted intensive attentions over the past several decades due to its versatile applications, such as the interpretation of pressuremeter/piezocone penetration testing results and the modelling of pile installation/tunnel excavation in civil engineering, and the prediction of critical mud pressure required to maintain the wellbore stability in petroleum engineering. Despite the fact that various types of constitutive models have been covered in the literature on this subject, the soils and/or rocks were usually treated as isotropic geomaterials.

In recognition of the above fact, this research makes a substantial extension of the fundamental cavity expansion theory by considering …


Field Instrumentations And Numerical Analysis Of Geosynthetic Reinforced Soil – Integrated Bridge System (Grs-Ibs), Allam Ardah Sep 2018

Field Instrumentations And Numerical Analysis Of Geosynthetic Reinforced Soil – Integrated Bridge System (Grs-Ibs), Allam Ardah

LSU Doctoral Dissertations

Geosynthetic reinforced soil (GRS) is a special soil with geosynthetic fabric closely stacked in layers as soil stabilization and considered an alternative design method to the conventional bridge support technology. In this research study, a field case study of Maree Michel bridge, which is located in Route LA 91 Vermilion Parish in Louisiana, was instrumented with six different types of instrumentations to monitor the performance of GRS-IBS bridge abutment and to develop 2D and 3D finite element models. The instrumentations include Shape Acceleration Array (SAA), earth pressure cells, strain gauges, piezometers, and thermocouples. Additionally, surveying was conducted at the bridge …


Pore-Scale And Conventional Wettability Measurement Considerations For Improving Certainty Of Geological Co2 Sequestration, Mohammad Jafari Jun 2018

Pore-Scale And Conventional Wettability Measurement Considerations For Improving Certainty Of Geological Co2 Sequestration, Mohammad Jafari

LSU Doctoral Dissertations

Parallel to the approach of developing zero-carbon-emission energies, other solutions have been recently proposed to decrease the amount of CO2 emissions into the atmosphere. Geological CO2 sequestration (GCS) has provided economic benefits and slight adverse environmental effects. GCS involves capturing CO2 from large producers, then injecting it into deep layers of the earth’s subsurface to be stored for hundreds to thousands of years. A safe and economic GCS requires a profound knowledge of immiscible CO2-water/brine fluid flow in CO2 storage sites including capillary pressure which has a barrier effect against leakage. The main uncertainty in measuring capillary pressure is due …


Microfluidic Pore Model Study On Physical And Geomechanical Factors Influencing Fluid Flow Behavior In Porous Media, Shuang Cao Dec 2017

Microfluidic Pore Model Study On Physical And Geomechanical Factors Influencing Fluid Flow Behavior In Porous Media, Shuang Cao

LSU Doctoral Dissertations

Fluid flow in porous media is a subject of fundamental importance and relevant to numerous engineering applications. The comprehensive description of fluid interaction parameters containing wetting properties, fluid-fluid displacement ratio, and capillary pressure, are inevitably needed. Moreover, the fine-grained sediments’ response to various pore fluids and migration in porous media influences reservoir geomechanical properties and pore clogging is essential to a better understanding of fluids flow behavior.

This dissertation provides a detailed study of physical and geomechanical factors influencing fluids flow behavior in porous media. The two-dimensional micromodel tests have been conducted under a wide selection of fluids flow conditions. …


Numerical Evaluation Of The Lateral Behavior Of Vertical And Battered Pile Group Foundations Using 3-D Finite Element Modeling, Ahmad Souri Nov 2017

Numerical Evaluation Of The Lateral Behavior Of Vertical And Battered Pile Group Foundations Using 3-D Finite Element Modeling, Ahmad Souri

LSU Doctoral Dissertations

The design of pile foundations to resist lateral loads is essential in offshore structures and bridge foundations. The lateral behavior of piles has been studied in the past by experimental investigations coupled with analytical and numerical methods. The problem is complex due to the nonlinearities from soil behavior, gap formation, and pile-soil-pile interaction in pile groups (or the group effect). In this work, the finite element (FE) modeling was used to study the lateral behavior of pile groups. The FE method is robust and allows incorporating the necessary aspects for studying the behavior of pile groups. The nonlinear material behavior …


Diagenesis And Formation Stress In Fracture Conductivity Of Shaly Rocks; Experimental-Modelling Approach In Co2-Rock Interactions, Abiola Olukola Olabode Aug 2017

Diagenesis And Formation Stress In Fracture Conductivity Of Shaly Rocks; Experimental-Modelling Approach In Co2-Rock Interactions, Abiola Olukola Olabode

LSU Doctoral Dissertations

In large scale subsurface injection of carbon dioxide (CO2) as obtainable in carbon sequestration programs and in environmentally friendly hydraulic fracturing processes (using supercritical CO2), long term rock-fluid interaction can affect reservoir and seal rocks properties which are essential in monitoring the progress of these operations. The mineralogical components of sedimentary rocks are geochemically active particularly under enormous earth stresses, which generate high pressure and temperature conditions in the subsurface. While geomechanical properties such as rock stiffness, Poisson’s ratio and fracture geometry largely govern fluid flow characteristics in deep fractured formations, the effect of mineralization can …