Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Engineering

Old Dominion University

Electrochemical hydrogenation

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Reduced Metal Nanocatalysts For Selective Electrochemical Hydrogenation Of Biomass-Derived 5-(Hydroxymethyl)Furfural To 2, 5-Bis(Hydroxymethyl)Furan In Ambient Conditions, Baleeswaraiah Muchharla, Moumita Dikshit, Ujjwal Pokharel, Ravindranath Garimella, Adetayo Adedeji, Kapil Kumar, Wei Cao, Hani Elsayed-Ali, Kishor Kumar Sadasivuni, Naif Abdullah Al-Dhabi, Sandeep Kumar, Bijandra Kumar Jan 2023

Reduced Metal Nanocatalysts For Selective Electrochemical Hydrogenation Of Biomass-Derived 5-(Hydroxymethyl)Furfural To 2, 5-Bis(Hydroxymethyl)Furan In Ambient Conditions, Baleeswaraiah Muchharla, Moumita Dikshit, Ujjwal Pokharel, Ravindranath Garimella, Adetayo Adedeji, Kapil Kumar, Wei Cao, Hani Elsayed-Ali, Kishor Kumar Sadasivuni, Naif Abdullah Al-Dhabi, Sandeep Kumar, Bijandra Kumar

Chemistry & Biochemistry Faculty Publications

Selective electrochemical hydrogenation (ECH) of biomass-derived unsaturated organic molecules has enormous potential for sustainable chemical production. However, an efficient catalyst is essential to perform an ECH reaction consisting of superior product selectivity and a higher conversion rate. Here, we examined the ECH performance of reduced metal nanostructures i.e., reduced Ag (rAg) and reduced copper (rCu) prepared via electrochemical or thermal oxidation and electrochemical reduction process, respectively. Surface morphological analysis suggests formation of nanocoral and entangled nanowire structure formation for rAg and rCu catalysts. rCu exhibits slight enhancement in ECH reaction performance in comparison to the pristine Cu. However, the rAg …


Value Added Products From Lignin And Biomass Derivatives, Chen Li Jan 2018

Value Added Products From Lignin And Biomass Derivatives, Chen Li

Civil & Environmental Engineering Theses & Dissertations

Pyrolysis is one of the traditional lignin and biomass utilization methods. The liquid products bio-oil and solid products bio-char are the main value-added products from lignin pyrolysis. Due to the narrow application and low quality, using the pyrolysis method to produce bio-oil and bio-char cannot bring sufficient economic benefits. In this dissertation, two methods were investigated to improve the quality of lignin bio-products.

Instead of direct pyrolysis, chemical activation (pyrolysis) was introduced in this dissertation. Compared to bio-char, the lignin chemical activation product lignin-activated-carbon has better economic value. With the best activation conditions, the lignin-activated-carbon produced a surface area of …