Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Chemistry

2016

Institution
Keyword
Publication
Publication Type

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Hydraulic And Electrokinetic Delivery Of Remediants For In-Situ Remediation, Ahmed I. A. Chowdhury Sep 2016

Hydraulic And Electrokinetic Delivery Of Remediants For In-Situ Remediation, Ahmed I. A. Chowdhury

Electronic Thesis and Dissertation Repository

Nano-scale zero valent iron (nZVI) has shown promising mobility and in-situ reactivity with chlorinated volatile organic compounds when injected into saturated porous media. The current study evaluated nZVI mobility and subsequent reactivity with in-situ contaminants in a variably saturated porous media. The nZVI particles, synthesized onsite at subzero temperatures, demonstrated complete trichloroethene (TCE) degradation within the target area. Furthermore, a three dimensional finite difference model (CompSim) was utilized to investigate nZVI mobility in variably saturated zones. Model predicted well head data were in very good agreement with field observations. Simulation results showed that the injected slurry migrated radially outward from …


The Use Of Sodium Persulfate In Hydraulic Fracturing Fluids: A Degradation Study Based On Furfural, Katherine Elizabeth Manz Aug 2016

The Use Of Sodium Persulfate In Hydraulic Fracturing Fluids: A Degradation Study Based On Furfural, Katherine Elizabeth Manz

Masters Theses

Hydraulic fracturing has allowed natural gas to become a viable energy source via extraction of unconventional shale reserves, but this process requires an enormous amount of water. To ensure a productive fracture, a proprietary blend of chemical additives is added to the water. In this research, a hydraulic fracturing chemical additive – an enzyme breaking agent – is analyzed for organic components using gas chromatography mass spectrometry. The chemical changes that occur over the course of a fracture are also investigated using one model chemical found in the additive, furfural, in order to help assess the environmental risk that hydraulic …


The Role Of Organic Matter In The Fate And Transport Of Antibiotic Resistance, Metals, And Nutrients In The Karst Of Northwest Arkansas, Victor Lee Roland Ii Aug 2016

The Role Of Organic Matter In The Fate And Transport Of Antibiotic Resistance, Metals, And Nutrients In The Karst Of Northwest Arkansas, Victor Lee Roland Ii

Graduate Theses and Dissertations

Organic matter (OM) in the environment acts as a nutrient, but may also act as a transport vector for harmful chemical compounds and bacteria. Acetate is a labile form of OM produced during fermentation in anaerobic lagoons used to store animal fecal-waste from concentrated animal feeding operations (CAFOs). Dry and liquid fertilizers from CAFOs pose a threat to groundwater by introducing excessive amounts of nutrients (e.g. OM, nitrate and ammonia), metals, and antibiotic compounds. In the epikarst of Northern Arkansas in the Buffalo River watershed additional input of labile dissolved organic carbon (DOC) from liquid CAFO waste-fertilizers was hypothesized to …


Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce Jul 2016

Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce

Civil and Environmental Engineering Faculty Publications and Presentations

New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low volatility species, from diameters ∼ 1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids …


Possible Sources And Impacts Of Biochar Water Extractable Organic Compounds On Aquatic Microorganisms, Cameron Russell Smith Jul 2016

Possible Sources And Impacts Of Biochar Water Extractable Organic Compounds On Aquatic Microorganisms, Cameron Russell Smith

Chemistry & Biochemistry Theses & Dissertations

Smokeless biomass pyrolysis with application of biochar as a soil amendment could be a significant approach for carbon sequestration to possibly control climate change for energy and environmental sustainability. If biochar were to be utilized as a soil amendment and a carbon sequestration agent at Gt C scales, the release of potentially toxic compounds into soils and associated hydrological systems, through soil rainwater runoff and leaching, might have negative consequences, in both agro-ecosystems and aquatic environmental systems. Therefore, the main focus of this dissertation was to study the sources and chemical composition of biochar water extractable (soluble) organic compounds and …


Aqueous Photochemistry Of Glyoxylic Acid, Alexis J. Eugene, Sha-Sha Xia, Marcelo I. Guzman Jun 2016

Aqueous Photochemistry Of Glyoxylic Acid, Alexis J. Eugene, Sha-Sha Xia, Marcelo I. Guzman

Chemistry Faculty Publications

Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. While the formation of secondary organic aerosols (SOA) from gas phase precursors is relatively well understood, studying aqueous chemical reactions contributing to the total SOA budget is the current focus of major attention. Field measurements have revealed that mono-, di-, and oxo-carboxylic acids are abundant species present in SOA and atmospheric waters. This work explores the fate of one of these 2-oxocarboxylic acids, glyoxylic acid, which can photogenerate reactive species under solar irradiation. Additionally, the dark thermal aging …


Carbon Nanotubes Affect The Toxicity Of Cuo Nanoparticles To Denitrification In Marine Sediments By Altering Cellular Internalization Of Nanoparticle, Xiong Zheng, Yinglong Su, Yinguang Chen, Rui Wan, Mu Li, Haining Huang, Xu Li Jun 2016

Carbon Nanotubes Affect The Toxicity Of Cuo Nanoparticles To Denitrification In Marine Sediments By Altering Cellular Internalization Of Nanoparticle, Xiong Zheng, Yinglong Su, Yinguang Chen, Rui Wan, Mu Li, Haining Huang, Xu Li

Department of Civil and Environmental Engineering: Faculty Publications

Denitrification is an important pathway for nitrate transformation in marine sediments, and this process has been observed to be negatively affected by engineered nanomaterials. However, previous studies only focused on the potential effect of a certain type of nanomaterial on microbial denitrification. Here we show that the toxicity of CuO nanoparticles (NPs) to denitrification in marine sediments is highly affected by the presence of carbon nanotubes (CNTs). It was found that the removal efficiency of total NOX-N (NO3-N and NO2-N) in the presence of CuO NPs was only 62.3%, but it …


Hydrogeochemical Modeling Of Saltwater Intrusion And Water Supply Augmentation In South Florida, Yonas T. Habtemichael Apr 2016

Hydrogeochemical Modeling Of Saltwater Intrusion And Water Supply Augmentation In South Florida, Yonas T. Habtemichael

FIU Electronic Theses and Dissertations

The Biscayne Aquifer is a primary source of water supply in Southeast Florida. As a coastal aquifer, it is threatened by saltwater intrusion (SWI) when the natural groundwater flow is altered by over-pumping of groundwater. SWI is detrimental to the quality of fresh groundwater sources, making the water unfit for drinking due to mixing and reactions with aquifer minerals. Increasing water demand and complex environmental issues thus force water utilities in South Florida to sustainably manage saltwater intrusion and develop alternative water supplies (e.g., aquifer storage and recovery, ASR).

The objectives of this study were to develop and use calibrated …


Removal Of Perfluorooctanoic Acid From Water Using Primitive, Conventional And Novel Carbonaceous Sorbent Materials, Christopher K. Brown Mar 2016

Removal Of Perfluorooctanoic Acid From Water Using Primitive, Conventional And Novel Carbonaceous Sorbent Materials, Christopher K. Brown

Theses and Dissertations

Polyfluoroalkyl Substances (PFAS), like perfluorooctanoic acid, have been used for the last 50 years in a wide variety of industrial processes and consumer-based products, including polymer additives, lubricants, fire retardants and suppressants, pesticides, and surfactants (Buck et al. 2015). The Department of Defense (DoD) has used PFAS-based Aqueous Film Forming Foam (AFFF) at fire training facilities and aircraft hangars. AFFF has contaminated approximately 600 sites classified as fire training facilities with PFAS (Huang, 2013).

This study focused on testing the most likely carbonaceous adsorbent compounds to remediate PFAS-contaminated sites on Air Force installations. Batch tests were performed to determine the …


Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski Jan 2016

Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski

Wojciech Budzianowski

-


Methane Emissions As Energy Reservoir: Context, Scope, Causes And Mitigation Strategies, Xiaoli Chai, David J. Tonjes, Devinder Mahajan Jan 2016

Methane Emissions As Energy Reservoir: Context, Scope, Causes And Mitigation Strategies, Xiaoli Chai, David J. Tonjes, Devinder Mahajan

Technology & Society Faculty Publications

Methane (CH4) is now considered a bridge fuel between present fossil (carbon) economy and desired renewables and this energy molecule is projected to play an important role in the global energy mix well beyond 2035. The atmospheric warming potential of CH4 is 28-36 times, when averaged over a 100-year period, that of carbon dioxide (CO2) and this necessitates a close scrutiny of global CH4 emissions inventory. As the second most abundant greenhouse gas (GHG), the annual global CH4 emissions were 645 million metric tons (MMT), accounting for 14.3% of the global anthropogenic GHG emissions. Of this, five key anthropogenic sources: …


Inżynieria Chemiczna Lab., Wojciech M. Budzianowski Jan 2016

Inżynieria Chemiczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

-


Single Particle-Inductively Coupled Plasma-Mass Spectrometry Technology Development For Metallic Nanoparticle Characterization In Complex Matrices, Yongbo Dan Jan 2016

Single Particle-Inductively Coupled Plasma-Mass Spectrometry Technology Development For Metallic Nanoparticle Characterization In Complex Matrices, Yongbo Dan

Doctoral Dissertations

"As the rapid growing of nanotechnology, the release of engineered nanoparticles (ENPs) into the environment is inevitable. After entering the real environment, ENPs tend to react with different components of the ecosystem (e.g. water, soil, air, plants) and make their characterization difficult. Analyzing ENPs in these complex matrices still remains as a grand challenge. ENPs characterization is normally the first step of risk assessment. Current analytical techniques have shown some limitations in revealing the unique characteristics of ENPs in complex matrices and reliable analytical techniques are in urgent need. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) is an emerging …


Phosphorus Removal Using Titanium Dioxide Nanoparticles In Wastewater Treatment, Suyoung Choi Mr. Jan 2016

Phosphorus Removal Using Titanium Dioxide Nanoparticles In Wastewater Treatment, Suyoung Choi Mr.

Theses and Dissertations (Comprehensive)

Due to eutrophication caused by nutrients such as phosphorus (P), local surface water near military garrisons and camps has been deteriorated for several years in the Republic of Korea. Thus, in order to remove excessive P in local fresh water, various size of titanium dioxide (TiO2) were used.

In the first investigation, TiO2 mixed bulk powder (particle size > 5µm) showed maximum P removal with pH dependence (higher pH shows lower P removal), that was approximately 27%. To determine adsorption isotherms, Langmuir and Freudlich models were used. The experimental data was better fit by a Langmuir model compared …


Chemical Removal Of Total Phosphorus From Wastewater To Low Levels And Its Analysis, Farah Ateeq Jan 2016

Chemical Removal Of Total Phosphorus From Wastewater To Low Levels And Its Analysis, Farah Ateeq

Theses and Dissertations (Comprehensive)

Numerous studies have been conducted on the removal of inorganic phosphorus (P) from wastewater, but a push towards lower effluent targets necessitates the additional removal of organic phosphorus as well. This study tested the ability of manganese oxide nanoparticles and iron oxide as potential catalysts for conversion of organic P into more readily removable inorganic forms, as well as the role of iron(III) chloride as coagulant to subsequently allow P to be removed by solids/liquid separation. Removals of 99-101% were obtained for model compounds at pH 5-7, 0.05-0.5 M H2O2, and Fe:P molar ratio of 5:1. …


The Role Of Microbial Exopolymers In Determining The Fate Of Oil And Chemical Dispersants In The Ocean, Antonietta Quigg, Uta Passow, Wei-Chun Chin, Chen Xu, Shawn Doyle, Laura Bretherton, Manoj Kamalanathan, Alicia K. Williams, Jason B. Sylvan, Zoe V. Finkel, Anthony H. Knap, Kathleen A. Schwehr, Saijin Zhang, Luni Sun, Terry L. Wade, Wassim Obeid, Patrick G. Hatcher, Peter H. Santschi Jan 2016

The Role Of Microbial Exopolymers In Determining The Fate Of Oil And Chemical Dispersants In The Ocean, Antonietta Quigg, Uta Passow, Wei-Chun Chin, Chen Xu, Shawn Doyle, Laura Bretherton, Manoj Kamalanathan, Alicia K. Williams, Jason B. Sylvan, Zoe V. Finkel, Anthony H. Knap, Kathleen A. Schwehr, Saijin Zhang, Luni Sun, Terry L. Wade, Wassim Obeid, Patrick G. Hatcher, Peter H. Santschi

Chemistry & Biochemistry Faculty Publications

The production of extracellular polymeric substances (EPS) by planktonic microbes can influence the fate of oil and chemical dispersants in the ocean through emulsification, degradation, dispersion, aggregation, and/or sedimentation. In turn, microbial community structure and function, including the production and character of EPS, is influenced by the concentration and chemical composition of oil and chemical dispersants. For example, the production of marine oil snow and its sedimentation and flocculent accumulation to the seafloor were observed on an expansive scale after the Deepwater Horizon oil spill in the Northern Gulf of Mexico in 2010, but little is known about the underlying …