Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 111

Full-Text Articles in Engineering

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi Feb 2024

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


Shape Memory Polymer-Based Multifunctional Syntactic Foams, Siavash Sarrafan Apr 2023

Shape Memory Polymer-Based Multifunctional Syntactic Foams, Siavash Sarrafan

LSU Doctoral Dissertations

With the increase in popularity of shape memory polymers (SMPs), especially in applications such as aerospace, textile, biomedical engineering, and even structures, the weight of the material and the devices made with it has always been a crucial factor. Using the shape memory polymer as a matrix to make a syntactic foam is one of the best and most affordable approaches to creating a lighter material that still has the shape memory effect. The addition of particles of different stiffness, strength, and size, with variable fractions, creates a composite that enables engineering the mechanical, as well as other physical and …


Development Of Novel Electrodes And Electrolytes For Safer Aqueous Ammonium Ion Batteries With Enhanced Performance., Shelton Farai Kuchena Apr 2023

Development Of Novel Electrodes And Electrolytes For Safer Aqueous Ammonium Ion Batteries With Enhanced Performance., Shelton Farai Kuchena

LSU Doctoral Dissertations

The Lithium-ion battery (LIBs) system has dominated the battery market because of its superior energy and power density. Problems related to LIBs such as safety, scarcity of cobalt and lithium have led researchers to explore alternative battery systems. NH4+ ion is a nonmetal charge carrier with lower molar mass (18 mol g-1) and smaller hydrated ionic size (3.31 Å) which results in excellent electrochemical properties. Furthermore, NH4+ ion has a tetrahedral structure that has no preferred orientation as compared to spherical metal ions giving a different intercalation chemistry based on hydrogen bonding. These properties …


Physics-Based Crystal Plasticity Model For Predicting Microstructure Evolution And Dislocation Densities, Juyoung Jeong Mar 2023

Physics-Based Crystal Plasticity Model For Predicting Microstructure Evolution And Dislocation Densities, Juyoung Jeong

LSU Doctoral Dissertations

This work presents three different studies investigating plastic deformation mechanisms in metals and alloys using crystal plasticity finite element (CPFE) modeling. The first study presents a new nonlocal crystal plasticity model for face-centered cubic single crystals under heterogeneous inelastic deformation. The model incorporates generalized constitutive relations that incorporate the thermally activated and drag mechanisms to cover different kinetics of viscoplastic flow in metals and describes the plastic flow and yielding of single-crystals using dislocation densities. The model is compared to micropillar compression experiments for copper single crystals and clarifies the complex microstructural evolution of dislocation densities in metals. The second …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


A Deep Reinforcement Learning Approach With Prioritized Experience Replay And Importance Factor For Makespan Minimization In Manufacturing, Jose Napoleon Martinez Apr 2022

A Deep Reinforcement Learning Approach With Prioritized Experience Replay And Importance Factor For Makespan Minimization In Manufacturing, Jose Napoleon Martinez

LSU Doctoral Dissertations

In this research, we investigated the application of deep reinforcement learning (DRL) to a common manufacturing scheduling optimization problem, max makespan minimization. In this application, tasks are scheduled to undergo processing in identical processing units (for instance, identical machines, machining centers, or cells). The optimization goal is to assign the jobs to be scheduled to units to minimize the maximum processing time (i.e., makespan) on any unit.

Machine learning methods have the potential to "learn" structures in the distribution of job times that could lead to improved optimization performance and time over traditional optimization methods, as well as to adapt …


Machine Learning Assisted Discovery Of Shape Memory Polymers And Their Thermomechanical Modeling, Cheng Yan Apr 2022

Machine Learning Assisted Discovery Of Shape Memory Polymers And Their Thermomechanical Modeling, Cheng Yan

LSU Doctoral Dissertations

As a new class of smart materials, shape memory polymer (SMP) is gaining great attention in both academia and industry. One challenge is that the chemical space is huge, while the human intelligence is limited, so that discovery of new SMPs becomes more and more difficult. In this dissertation, by adopting a series of machine learning (ML) methods, two frameworks are established for discovering new thermoset shape memory polymers (TSMPs). Specifically, one of them is performed by a combination of four methods, i.e., the most recently proposed linear notation BigSMILES, supplementing existing dataset by reasonable approximation, a mixed dimension (1D …


An Improved Earned Value Management Method Integrating Quality And Safety, Brian Briggs Jul 2021

An Improved Earned Value Management Method Integrating Quality And Safety, Brian Briggs

LSU Doctoral Dissertations

The construction industry invests significant time and money to improve quality and safety while reducing cost and schedule impacts. The industry has a sincere desire to improve construction project management methods to improve efficiency. Historically, quality and safety underperformances result from undermanaged quality control and safety activities. The cost and schedule impacts associated with poor quality work have always had an impact on construction operations. The unprecedented challenges and uncertainties of COVID-19 highlighted the need to improve the Earned Value Management (EVM) method within construction to reflect these quality and safety activities. The central goal of this dissertation is to …


Atomistic Thermo-Mechanical Description Of The Deformation Behavior, Scaling Laws, And Constitutive Modeling Of Nanoporous Gold, Mohammed Hassan Yousef Saffarini Jun 2021

Atomistic Thermo-Mechanical Description Of The Deformation Behavior, Scaling Laws, And Constitutive Modeling Of Nanoporous Gold, Mohammed Hassan Yousef Saffarini

LSU Doctoral Dissertations

Metallic foams, or nanoporous (NP) metals as it is widely referred to in literature, with ligament sizes up to a few tens of nm show exceptional mechanical properties such as high strength and stiffness per weight ratio under different loading scenarios due to their high surface area to solid volume ratio. Therefore, they can be utilized in a wide range of applications making them of great interest to researchers. While their elasticity and yield strength have been the subject of several studies, very limited attention was given to the effect of size, strain rate, and temperature on the material plastic …


Modeling Hydraulic Fracturing Initiation And Propagation In Porous Rock Formationsl, Chang Huang May 2021

Modeling Hydraulic Fracturing Initiation And Propagation In Porous Rock Formationsl, Chang Huang

LSU Doctoral Dissertations

Hydraulic fracturing has long been introduced to the oil and gas industry since the early nineteenth century for both reservoir characterization and reservoir stimulation. Despite the progress made in the last two decades, many challenges still have not been tackled regarding not only the propagation problem but also the initiation problem due to its complexity. The dissertation is divided into two stages, i.e., before and after fracture initiation. The first stage of the research aimed at improving the accuracy in solving the poro-mechanical response of wellbore during fluid injection before a tensile fracture occurs, which is crucial to determine the …


An Improved Foam Modeling Technique And Its Application To Petroleum Drilling And Production Practice, Yanfang Wang Dec 2020

An Improved Foam Modeling Technique And Its Application To Petroleum Drilling And Production Practice, Yanfang Wang

LSU Doctoral Dissertations

Foam is one of the most common used multiphase fluid in Underbalanced Drilling (UBD) and Managed Pressure Drilling (MPD). Because of its low density, high capacity of lifting and carrying cuttings, low cost and compatibility with formations, foam has become more superior than the conventional drilling mud when depleted reservoir pressure, severe lost circulation, or unstable borehole are encountered. In general, the success of foam applications rely on the understanding of the fundamentals of foam rheology in downhole conditions.

Foam rheology has been studied for decades. Conventional foam rheological models such as Power Law, Bingham Plastic, Herschel-Bulkley to explain foam …


Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu Nov 2020

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu

LSU Doctoral Dissertations

The ability to explore and predict metastable structures of hybrid self-assemblies is of central importance for the next generation of advanced materials with novel properties. As compared to their thermodynamically stable forms, the kinetically stabilized materials show improved functionality potentially over their stable counterparts. The self-assembly processes usually originate from weak intermolecular interactions, involving a dynamic competition between attractive and repulsive interactions. These weak forces, including van der Waals (vdW), electrostatic interaction and the hydrogen bonding (H-bonding), can be tuned by external stimuli, e.g., confinement, temperature and ionization, and consequently driving hybrid materials into different configurations. It is challenging to …


Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang Nov 2020

Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang

LSU Doctoral Dissertations

Solid phase extraction (SPE) is a widely used method to separate and concentrate the target molecules in liquid mixture. Traditional SPE has to be conducted in the laboratory with professional equipment and skilled operators. The microfluidic and 3D printing technology have opened up the opportunity in developing miniaturized automatic instruments. The main contribution of this research is to integrate the SPE process on a novel centrifugal platform. Various valves are applied on the platform to help control the aqueous sample and reagents in the cartridge.

First, a centrifugal microfluidic platform was built for automatically detecting trace oil pollution in water. …


Factors Influencing Retirement Decision Making For Louisiana State Government Employees, Osama A. Amous Oct 2019

Factors Influencing Retirement Decision Making For Louisiana State Government Employees, Osama A. Amous

LSU Doctoral Dissertations

ABSTRACT

Public pension members continually face factors affecting their decision to retire in the changing American society. Workers are living longer and need more medical care with better retirement benefits. For Louisiana public employees specifically, no prior studies have examined the factors affecting workers’ decision to retire nor evaluated the factors impacting workers’ decision.

This multiphase study aimed to identify factors and evaluate the decision-making process that enables Louisianans to retire happily and satisfied with a guaranteed income, and to examine millennials’ decision-making process. In the initial phase, ten active and retired male and female participants answered questions in-person, leading …


Relating Individual Characteristics And Task Complexity To Performance Effectiveness In Individual And Collaborative Problem Solving, Kaveh Sheikhrezaei Oct 2019

Relating Individual Characteristics And Task Complexity To Performance Effectiveness In Individual And Collaborative Problem Solving, Kaveh Sheikhrezaei

LSU Doctoral Dissertations

The objective of this research is to examine the variables that influence performance effectiveness on individual and collaborative problem solving. The last few years have seen renewed interest in how team member personal characteristics and team composition characteristics impact team effectiveness.

Even with a growing quantity of organizations performing jobs by using groups, little is understood how people included in a team impact intragroup interaction and results. Most research investigates group’s performance based on a single characteristic which causes much confusion and contradictory results of the variables that impact overall group performance. Most research typically does not analyze the composition …


Costs And Benefits Of Flood Mitigation In Louisiana, Arash Taghi Nezhad Bilandi Dec 2018

Costs And Benefits Of Flood Mitigation In Louisiana, Arash Taghi Nezhad Bilandi

LSU Doctoral Dissertations

Assessing the costs and benefits of hazard mitigation efforts is an essential component of disaster management, planning, and resilience assessment. These calculations are particularly important in locations vulnerable to multiple hazards with high frequencies, such as coastal Louisiana. This study aims to provide an improved understanding of the costs and benefits of flood mitigation efforts in Louisiana funded by federal government grants between 2005 and 2015. Project data provided by the Governor’s Office of Homeland Security and Emergency Preparedness (GOHSEP) were summarized and missing values were imputed using robust statistical approaches. Elevation project cost was investigated for prediction by statistical …


Development Of Self-Healing Mechanisms For Asphalt Pavements, Max Abelardo Aguirre Deras Aug 2018

Development Of Self-Healing Mechanisms For Asphalt Pavements, Max Abelardo Aguirre Deras

LSU Doctoral Dissertations

Self-healing mechanisms, such as microcapsules or hollow-fibers, filled with an asphalt rejuvenator present an emerging technology that would enhance an asphalt mixture’s resistance to cracking damage caused by vehicular and environmental loading. The objectives of this study were to: (a) Evaluate the effects of asphalt rejuvenators on hot-mix asphalt mixtures in order to test its effects on the fundamental engineering properties of the mixtures at high and intermediate temperatures; (b) Develop a synthesis procedure for production of microcapsules and hollow-fibers containing an asphalt rejuvenator; (c) Evaluate the self-healing efficiency of double-walled microcapsules and hollow-fibers filled with an asphalt rejuvenator, through …


A Coupled Thermo-Mechanical Theory Of Strain Gradient Plasticity For Small And Finite Deformations, Yooseob Song Jun 2018

A Coupled Thermo-Mechanical Theory Of Strain Gradient Plasticity For Small And Finite Deformations, Yooseob Song

LSU Doctoral Dissertations

In this work, a thermodynamically consistent coupled thermo-mechanical gradient enhanced continuum plasticity theory is developed for small and finite deformations. The proposed model is conceptually based on the dislocations interaction mechanisms and thermal activation energy. The thermodynamic conjugate microstresses are decomposed into energetic and dissipative components. This work incorporates the thermal and mechanical responses of microsystems. It addresses phenomena such as size and boundary effects and in particular microscale heat transfer in fast-transient processes. Not only the partial heat dissipation caused by the fast transient time, but also the distribution of temperature caused by the transition from the plastic work …


Rice Hull Bioreactor For Recirculating Aquaculture, Marlon A. Greensword Aug 2017

Rice Hull Bioreactor For Recirculating Aquaculture, Marlon A. Greensword

LSU Doctoral Dissertations

The engineering of floating media biofilters has been optimized over the years. The backwashing process has made them more energy and water efficient. Likewise, moving bed bioreactors (MBBR) are gaining interest and popularity because they are relatively affordable to build. Yet, developing countries’ aquaculture production remains largely excluded from the advances made in recirculating aquaculture systems (RAS). This discrepancy is partially driven by the high costs of media such plastic beads and Kaldnes (KMT) media, commonly used in MBBR.

This dissertation evaluates the usability and profitability of rice hulls (RH), an abundant by-product in many developing nations, as a sinking …


Performance Evaluation And Characterization Of Encapsulated Calcium Nitrate For Self-Healing Concrete Applications, Jose Eduardo Milla Jan 2017

Performance Evaluation And Characterization Of Encapsulated Calcium Nitrate For Self-Healing Concrete Applications, Jose Eduardo Milla

LSU Doctoral Dissertations

Self-healing concrete through microencapsulated calcium nitrate is a novel approach to enhance durability and decrease the costs associated with maintenance and repairs. However, to fully assess the potential of this technology, there are many questions to be answered, ranging from identifying the microcapsule properties that are successfully carry the healing agent, to the effect of the microcapsule size, concentration (by weight of cement), and morphology have on the intrinsic concrete material properties and self-healing potential. Hence, the objectives of this study were to: (a) Develop a microencapsulation procedure for calcium nitrate as the healing agent; (b) Measure the short-term healing …


Tribological And Dynamical Study Of An Automotive Transmission System, Meng Li Jan 2017

Tribological And Dynamical Study Of An Automotive Transmission System, Meng Li

LSU Doctoral Dissertations

The transmission system is critical for automotive and heavy duty equipment due to its prominent role in the powertrain system, which is often challenged with degraded torque capacity and harsh dynamic response. Simulation-guided design can provide appropriate guidelines to resolve these problems with virtual analyses. In current study, the tribological and dynamical study of an automatic transmission is performed at two levels: a wet clutch and powertrain. In this dissertation, tribological study is performed for a wet clutch based on the thermohydrodynamic (THD) analysis that takes the following factors into account. • The groove effect (depth, area, and pattern) is …


Healing Mechanism Investigation Of Self-Healing Concrete By Microencapsulated Calcium Nitrate, Gabriel Andres Arce Amador Jan 2017

Healing Mechanism Investigation Of Self-Healing Concrete By Microencapsulated Calcium Nitrate, Gabriel Andres Arce Amador

LSU Doctoral Dissertations

Durability of reinforced concrete structures depends highly on the integrity of the concrete which protects the structure from the environment. However, concrete is a brittle material and as such it is prone to cracking which allows for detrimental agents to penetrate the structure and produce early deterioration. Embedding microcapsules with chemical healing agents in concrete materials for self-healing applications as well as implementing SMAs as reinforcement of concrete structures for self-closing of cracks are both state-of-the-art techniques with enormous potential for enhancement of concrete infrastructure durability. In this work, both techniques are combined as an alternative for superior self-healing of …


Integration Of Shape-Memory Alloys And Self-Healing Microcapsules To Enhance Concrete Durability, Luis Adolfo Bonilla Jan 2017

Integration Of Shape-Memory Alloys And Self-Healing Microcapsules To Enhance Concrete Durability, Luis Adolfo Bonilla

LSU Doctoral Dissertations

Self-healing is a term that has not been used for building material until a few decades ago. The concept of developing a material that mimics what living organisms do, such as identify and repair damage, rather than interesting, constitutes a necessity in today’s deteriorated infrastructure. Concrete is one of the main building blocks that support our society’s roads, buildings, and dams. Increasing the service life of such structures will have an important socio-economic benefit in our society. Self-healing methods in concrete have been studied in order to minimize human intervention in maintenance procedures. Previous research in this area has provided …


Computational Studies On Fluid And Particle Dynamics, Chenguang Zhang Jan 2017

Computational Studies On Fluid And Particle Dynamics, Chenguang Zhang

LSU Doctoral Dissertations

This dissertation is divided into two parts. The first part includes chapter 2 to 4, which focus on development and application of numerical algorithm on particle and fluid simulation. Starting with a pure granular system in a driven cavity setup (Chapter 2), we move on to the immersed boundary simulation of fluid solid interaction (Chapter 3). This part ends with a coupled immersed boundary-discrete particle implementation. The second part includes Chapter 5 and Appendix A, each deals with an independent problem and focuses more on the theoretical aspects. Chapter 5 deals with a classic fluid dynamics problem of thermal wave …


Production Of Fermentable Sugars From Energy Cane Bagasse, Saeed Oladi Jan 2016

Production Of Fermentable Sugars From Energy Cane Bagasse, Saeed Oladi

LSU Doctoral Dissertations

Lignocellulosic biomass contains cellulose and hemicellulose which are composed of hexose and pentose sugars. These sugars can be used in the sustainable production of fuels and chemicals. However, the recalcitrant nature of lignocellulosic biomass makes this conversion a challenging process. An effective pretreatment can remove lignin, solubilize the hemicellulose, decrease cellulose crystallinity, and prepare the biomass for enzymatic hydrolysis and conversion into green renewable chemicals. The research study presented in this dissertation addressed some of the challenges associated with the conversion of lignocellulosic biomass into green fuels and chemicals. This study was divided into three main goals. The first goal …


Analysis Of Disruptions In The Gulf Of Mexico Oil And Gas Industry Supply Chain And Related Economic Impacts, Negar Dahitaleghani Jan 2016

Analysis Of Disruptions In The Gulf Of Mexico Oil And Gas Industry Supply Chain And Related Economic Impacts, Negar Dahitaleghani

LSU Doctoral Dissertations

Catastrophic events are human and economic tragedies in collaboration. Oil spills have enormous impacts on the local economy of the area and for the local labor markets. The Deepwater Horizon oil spill was caused by an explosion on semisubmersible drilling rig (Macondo) on April 20, 2010. Another regional disaster, Hurricane Katrina as it ripped over the core of the Gulf of Mexico producing zone, one of the most important oil and gas production region. With Geological complexities, continued of drilling and production in GoM increases the risk of having leak/spill. Therefore, the Econometrics methods, and Modeling to forecast impacts of …


Internal Cooling Using Novel Swirl Enhancement Strategies In A Slot Shaped Single Pass Channel, Del Alan Segura Jan 2016

Internal Cooling Using Novel Swirl Enhancement Strategies In A Slot Shaped Single Pass Channel, Del Alan Segura

LSU Doctoral Dissertations

A series of heat transfer tests using a single pass slot shaped channel utilizing varying configurations of trapezoid shaped turbulence enhancement strip or varying configurations of high velocity jets issuing from side channels are studied. Thermochromatic Liquid Crystal techniques are used to determine local heat transfer coefficients, which are converted to normalized Nusselt values. The results show a marked improvement over traditional heat transfer enhancements used in the mid-span region of first stage turbine blades.


Automated Generation And Visualization Of Initial Construction Schedules From Building Information Models, Yibrah Weldemihret Weldu Jan 2016

Automated Generation And Visualization Of Initial Construction Schedules From Building Information Models, Yibrah Weldemihret Weldu

LSU Doctoral Dissertations

Recent advances in digital technology have had a significant influence on the quality and speed of sharing and communicating project information in the architecture, engineering, and construction (AEC) industry. The process of acquiring the design intent in order to develop and communicate project schedules, as critical components of project delivery, have similarly been benefitting from such progress. With the relatively recent techniques of Building Information Modeling (BIM) and its capability to integrate the facility design with its construction schedule, meaningul strides have been made in improving the information flow and eventually visualizing the final schedule in 4D. However, the need …


Numerical Simulations Of Wind Effects On Wave Nonlinearity And Hurricane-Induced Sediment Transport On Louisiana Coast, Ke Liu Jan 2016

Numerical Simulations Of Wind Effects On Wave Nonlinearity And Hurricane-Induced Sediment Transport On Louisiana Coast, Ke Liu

LSU Doctoral Dissertations

The objective of this study is to model wind effects on wave nonlinearity and the sediment suspension, transport and redistribution caused by hurricanes. The following questions are addressed through numerical simulations: (1) How do winds affect wave triad interactions and wave shape in the shallow water? (2) What is the role of hurricanes in coastal landscape evolution? Do they create more erosion or deposition? (3) Where does the observed post-hurricane deposition on coastal wetlands come from? First, wind effects were incorporated into a Boussinesq-type wave model, and evolution equations were derived for triad interactions with winds. Second, a coupled modeling …


Analysis And Management Of The Price Volatility In The Construction Industry, Alireza Joukar Jan 2016

Analysis And Management Of The Price Volatility In The Construction Industry, Alireza Joukar

LSU Doctoral Dissertations

The problem of price volatility as it pertains to material and labor is a major source of risk and financial distress for all the participants in the construction industry. The overarching goal of this dissertation is to address this problem from both viewpoints of risk analysis and risk management. This dissertation offers three independent papers addressing this goal. In the first paper using the Engineering News Record Construction Cost Index (ENR CCI), a predictive model is developed. The model uses General Autoregressive Conditional Heteroscedastic (GARCH) approach which facilitates both forecasting of the future values of the CCI, and capturing and …