Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Adjust-A-Ramp, Taylor Sharrits, Courtney Banks, Emily Beck, Jazmin Buenrostro Jan 2022

Adjust-A-Ramp, Taylor Sharrits, Courtney Banks, Emily Beck, Jazmin Buenrostro

Williams Honors College, Honors Research Projects

Adjust-A-Ramp is a portable ramp designed to ensure the safety of consumers and prevention of damage to cars, specifically towards low profile cars. A low-profile vehicle includes any vehicle that has a clearance off the ground of 6.5 inches or less. Advantages of low-profile vehicles include improved handling, better braking, increased fuel efficiency, increased stability, and an overall luxury aesthetic. The reduced tire size increases grip on smooth surfaces with better wheel response, creating a fast, more efficient ride. The simple tire tread patterns and the stiff sidewalls allow for lower rolling resistance which increases fuel economy. The Adjust-A-Ramp can …


Schaeffler E-Motor, Jenne Harasin, Zachary Zatta, Christopher Tvaroch Jan 2022

Schaeffler E-Motor, Jenne Harasin, Zachary Zatta, Christopher Tvaroch

Williams Honors College, Honors Research Projects

This project will be focusing on the work accomplished at Schaeffler to convert an existing internal combustion engine, Ford F-250 truck, into a battery electric vehicle. This report focuses on the vehicle's integration with an emphasis on the bearing design, e-Axle housing's method for mounting, bus bar design, resolver design, differential options, wiring for low and high voltage, and oil pump and cooling system for e-Beam. The bearings for the differential as well as the power transmission system from the electric motor to the e-Axle will need to be specified. By late summer 2022, Schaeffler will have a working prototype …


Grinding And Super-Finishing Test Machine Project, Michael Simon Jan 2022

Grinding And Super-Finishing Test Machine Project, Michael Simon

Williams Honors College, Honors Research Projects

A research project in The University of Akron to study grinding and super-finishing of silicon nitride ceramic was initiated by Dr. Siamak Farhad and sponsored by the Timken Company, with the assistance of undergraduate students Michael Simon, Ryan Hosso and Mathew Rozmajzl. The study required analysis of forces and scratches generated during grinding processes of silicon nitride samples. A testing assembly was designed and constructed to record the forces generated during grinding and super-finishing of silicon nitride samples in a computer-numerical-control machine. Silicon nitride samples were subjected to desired grinding and super-finishing operations and all forces generated during the process …


Co2 Based Parachute Deployment, Anthony M. S. Settlemier, Nicholas Motter Jan 2022

Co2 Based Parachute Deployment, Anthony M. S. Settlemier, Nicholas Motter

Williams Honors College, Honors Research Projects

This paper describes the design process of a CO2 based parachute deployment system for the Akronauts Rocket Design team, with particular emphasis on the selection of methodologies of deployment as well as design iteration. The objective was to create a fully mechanical system in order to replace the black powder based systems that were used previously by the team.

Emphasis was put in creating a system that would function well at higher altitudes while also preventing damage to the parachute during deployment. This system emphasizes robustness under launch conditions.


Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar Jan 2022

Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar

Williams Honors College, Honors Research Projects

The purpose of this research is to examine the effects of recycling PLA filament for 3D printing on its material properties. After examining these effects, PLA and carbon fiber additives were mixed with recycled PLA pellets in different ratios to attempt to regain material properties lost in the recycling process. To complete these findings, an experiment was design and executed.

The research found that tensile strength during multiple iterations of recycling remained mostly unaffected, however, the strain degraded exponentially. In the PLA additive study, high ratios of PLA additive were able to increase the strength and strain properties of the …