Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Mechanics

Theses/Dissertations

Nanomaterials

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Graduate Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and a …


A Comprehensive Multiphysics, Multiscale Modeling Framework For Carbon Nanotube Fabrication Process By Chemical Vapor Deposition, Mahmoud Reza Hosseini Aug 2008

A Comprehensive Multiphysics, Multiscale Modeling Framework For Carbon Nanotube Fabrication Process By Chemical Vapor Deposition, Mahmoud Reza Hosseini

All Dissertations

Carbon nanotubes (CNTs) are among the most promising nanosize materials as evidenced by the attention they have received since their discovery in 1991 and a wide range of scientific and industrial applications. Each of these applications requires unique CNTs with specific length, diameter and chirality. However, control of these parameters is considered as one of the main challenges for large scale production of CNTs. Furthermore, these processes are not well designed so as to limit the number of CNT defect sites or the production of unwanted byproducts such as amorphous carbon. Therefore, it is crucial to develop a controlled CNTs …