Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Engineering

System Performance Model And Control System For A Small-Scale Horizontal Axis Wind Turbine, Niko Banks Mar 2022

System Performance Model And Control System For A Small-Scale Horizontal Axis Wind Turbine, Niko Banks

Master's Theses

Predicting the performance of wind turbines is a key part of the turbine design process and operation, as predictive models play a large role in determining potential power output and efficiency at different operating conditions to help maximize production. On small-scale wind turbines performance models become more complex, as the rotor aerodynamic performance depends not only on the tip speed ratio, but also on the flow Reynolds number. An accurate predictive model that includes this behavior on small-scale wind turbines can be used to find the optimal operating conditions for power output, and is also a critical component of the …


Performance Loss Rate And Temperature Modeling In Predictive Energy Yield Programs For Utility-Scale Solar Power Plants, Katelynn M. Dinius Dec 2021

Performance Loss Rate And Temperature Modeling In Predictive Energy Yield Programs For Utility-Scale Solar Power Plants, Katelynn M. Dinius

Master's Theses

The Gold Tree Solar Farm, designed by REC Solar, has a rated output power of 4.5 MW and began operation in 2018 to provide electricity to Cal Poly’s campus. Gold Tree Solar Farm site terrain consists of rolling hills and uneven slopes. The uneven typography results in interrow shading, requiring a modified tracking control algorithm to maximize power production. Predicting a utility solar field’s lifetime energy yield is a critical step in assessing project feasibility and calculating project revenue. The MATLAB-based predictive power model developed for this field overpredicted power in the middle of the day. The purpose of this …


Implementing A Data Acquisition System For The Training Of Cloud Coverage Neural Networks, Weston C. Montgomery Jun 2021

Implementing A Data Acquisition System For The Training Of Cloud Coverage Neural Networks, Weston C. Montgomery

Master's Theses

Cal Poly is home to a solar farm designed to nominally generate 4.5 MW of electricity. The Gold Tree Solar Farm (GTSF) is currently the largest photovoltaic array in the California State University (CSU) system, and it was claimed to be able to produce approximately 11 GWh per year. These types of projections come from power generation models which have been developed to predict power production of these large solar fields. However, when it comes to near-term forecasting of power generation with variable sources such as wind and solar, there is definitely room for improvement.

The two primary factors that …


Power Output Modeling And Optimization For A Single Axis Tracking Solar Farm On Skewed Topography Causing Extensive Shading, Logan J. Smith Jun 2021

Power Output Modeling And Optimization For A Single Axis Tracking Solar Farm On Skewed Topography Causing Extensive Shading, Logan J. Smith

Master's Theses

Many utility-scale solar farms use horizontal single axis tracking to follow the sun throughout the day and produce more energy. Solar farms on skewed topography produce complex shading patterns that require precise modeling techniques to determine the energy output. To accomplish this, MATLAB was used in conjunction with NREL weather predictions to predict shading shapes and energy outputs. The MATLAB models effectively predicted the sun’s position in the sky, panel tilt angle throughout the day, irradiance, cell temperature, and shading size. The Cal Poly Gold Tree Solar Farm was used to validate these models for various lengths of time. First, …


Field Testing The Effects Of Low Reynolds Number On The Power Performance Of The Cal Poly Wind Power Research Center Small Wind Turbine, John B. Cunningham Dec 2020

Field Testing The Effects Of Low Reynolds Number On The Power Performance Of The Cal Poly Wind Power Research Center Small Wind Turbine, John B. Cunningham

Master's Theses

This thesis report investigates the effects of low Reynolds number on the power performance of a 3.74 m diameter horizontal axis wind turbine. The small wind turbine was field tested at the Cal Poly Wind Power Research Center to acquire its coefficient of performance, p, vs. tip speed ratio, λ, characteristics. A description of both the wind turbine and test setup are provided. Data filtration and processing techniques were developed to ensure a valid method to analyze and characterize wind power measurements taken in a highly variable environment. The test results demonstrated a significant drop in the …


Design Of Structural Stand For High-Precision Optics Microscopy, Sara T. Novell Jun 2020

Design Of Structural Stand For High-Precision Optics Microscopy, Sara T. Novell

Master's Theses

Lawrence Livermore National Lab (LLNL) is home to the National Ignition Facility (NIF), the world’s largest and most energetic laser. Each of the 192 beamlines contains dozens of large optics, which require offline damage inspection using large, raster-scanning microscopes. The primary microscope used to measure and characterize the optical damage sites has a precision level of 1 µm. Mounted in a class 100 clean room with a raised tile floor, the microscope is supported by a steel stand that structurally connects the microscope to the concrete ground. Due to ambient vibrations experienced in the system, the microscope is only able …


Finite-Difference Modeling Of The Batch Process Smoldering Combustion Of Wastewater, Laura H. Kawashiri Jun 2018

Finite-Difference Modeling Of The Batch Process Smoldering Combustion Of Wastewater, Laura H. Kawashiri

Master's Theses

A MATLAB model was developed for the smoldering combustion of wastewater in the context of a decentralized residential wastewater treatment appliance. Data from a batch process sewage smoldering experiment was simulated using implicit finite-difference approximations, assuming one-dimensional transient conductive heat transfer. The time-dependent temperature profiles within the column represented the main parameters of interest and were used to verify recoverable heat energy estimations. Given that the modeling method used for this thesis represents a unique approach, the assumptions and limitations of this model are thoroughly described in the context of reproducing results for other smoldering setups. A lack of convergence …


Development Of A Model And Optimal Control Strategy For The Cal Poly Central Plant And Thermal Energy Storage System, Daniel Douglas Castro Mar 2016

Development Of A Model And Optimal Control Strategy For The Cal Poly Central Plant And Thermal Energy Storage System, Daniel Douglas Castro

Master's Theses

This thesis develops a calibrated model of the Cal Poly Central Chilled Water Plant with Thermal Energy Storage for use in determining an optimal operating control strategy. The model was developed using a transient systems simulation program (TRNSYS) that includes plant performance and manufacturer data for the primary system components, which are comprised of pumps, chillers, cooling towers, and a thermal energy storage tank. The model is calibrated to the actual measured performance of the plant using the current control strategy as a baseline. By observing and quantifying areas for potential improvement in plant performance under conditions of high campus …


Increasing Isentropic Efficiency With Hydrostatic Head And Venturi Ejection In A Rankine Power Cycle, Nathan Daniel Ruiz Jun 2015

Increasing Isentropic Efficiency With Hydrostatic Head And Venturi Ejection In A Rankine Power Cycle, Nathan Daniel Ruiz

Master's Theses

This thesis describes the modifications made to the Cal Poly Thermal Science Laboratory’s steam turbine experiment. While the use of superheating or reheating is commonly used to increase efficiency in a Rankine cycle the methods prove unfeasible in a small scale project. For this reason, a mathematical model and proof of concept design using hydrostatic head generated by elevation and venturi ejection for use by the condenser is developed along with the equations needed to predict the changes to the system. These equations were used to create software to predict efficiency as well as lay down the foundation for future …


Methane Production By A Packed-Bed Anaerobic Digester Fed Dairy Barn Flush Water, Sean Richard Thomson Dec 2014

Methane Production By A Packed-Bed Anaerobic Digester Fed Dairy Barn Flush Water, Sean Richard Thomson

Master's Theses

Packed-bed digesters are an alternative to covered lagoon digesters for methane production and anaerobic treatment of dilute wastewaters such as dairy barn flush water. The physical media of packed-beds retain biofilms, often allowing increased treatment rates. Previous studies have evaluated several types of media for digestion of dilute wastewaters, but cost and media fouling have setback commercial development. A major operational cost has been effluent recirculation pumping.

In the present effort, a novel approach to anaerobic digestion of flush dairy water was developed at pilot-scale: broken walnut shells were used as a low-cost packed-bed medium and effluent recirculation was replaced …


Analysis And Optimization Of The Scheffler Solar Concentrator, Simone Alberti Dec 2014

Analysis And Optimization Of The Scheffler Solar Concentrator, Simone Alberti

Master's Theses

The Scheffler reflector is a new solar concentrator design which maintains a fixed focus while only having a single axis tracking mechanism. This design makes the construction and operation of high temperature solar concentrators accessible to developing nations. In this project, I wrote computer simulation codes to better understand the dynamics and the effect of deformation or deviations from ideal conditions in order to define necessary manufacturing and operational tolerances. These tools and knowledge drove the prototyping of new reflector concepts by myself and other students on my team. A fiberglass prototype was able to drive the cost of a …


Investigation Of Compressed Air Energy Storage Efficiency, James W. Keeney Dec 2013

Investigation Of Compressed Air Energy Storage Efficiency, James W. Keeney

Master's Theses

This study investigates Compressed Air Energy Storage (CAES) application in the

electrical power and transportation industries. Information concerning current CAES projects is

presented. A thorough thermodynamic analysis of the CAES process is completed; including

theoretical efficiency determination for several variants of the compression and expansion

processes. Industry claimed efficiencies ranging from 26% to 82% are presented and explained.

Isothermal and Isentropic efficiency baselines are developed. Energy density of compressed air

on both a mass and volume basis is compared to other energy storage methods. Best expected

efficiency of a hypothetical CAES system is determined to be 34% using currently achievable …


The Role Of Transport Phenomena In The Direct Oxidation Of Solid Fuels, Charles J. Banas Aug 2012

The Role Of Transport Phenomena In The Direct Oxidation Of Solid Fuels, Charles J. Banas

Master's Theses

Direct carbon fuel cells have shown promise for stationary power generation by utilizing the direct oxidation of a solid carbon fuel source at the anode. In laboratory settings, researchers have reported up to 300mA/cm2 of current density from these cells types which suffer from mass transport losses. This paper studies the surface properties of the solid fuel source, and describes the process of CO2 evolution through an analogy to pool boiling. In nucleate boiling (a subset of pool boiling) vapor bubbles grow from nucleation sites where gas are trapped in micro-cavities on the surface. Carbon surfaces possess these same features, …


Static Balancing Of The Cal Poly Wind Turbine Rotor, Derek Simon Aug 2012

Static Balancing Of The Cal Poly Wind Turbine Rotor, Derek Simon

Master's Theses

The balancing of a wind turbine rotor is a crucial step affecting the machine’s performance, reliability, and safety, as it directly impacts the dynamic loads on the entire structure.

A rotor can be balanced either statically or dynamically. A method of rotor balancing was developed that achieves both the simplicity of static balancing and the accuracy of dynamic balancing. This method is best suited, but not limited, to hollow composite blades of any size. The method starts by quantifying the mass and center of gravity of each blade. A dynamic calculation is performed to determine the theoretical shaking force on …


Small-Scale Solar Central Receiver System Design And Analysis, Daniel Murray Jun 2012

Small-Scale Solar Central Receiver System Design And Analysis, Daniel Murray

Master's Theses

This thesis develops an analytical model of a small-scale solar central receiver power plant located at the California Polytechnic State University in San Luis Obispo, California at 35.28° N, 120.66° W. The model is used to analyze typical energy output at any time during the year. The power plant is designed to produce an output of 100 kW electrical power, and is supplemented by the combustion of natural gas. Methodologies for determining the proper size and layout of heliostats, optimal tower height, receiver size, and turbine engine selection are developed. In this specific design, solar shares of up to 73.2% …


Latent Heat Thermal Energy Storage With Embedded Heat Pipes For Concentrating Solar Power Applications, Christopher Robak Apr 2012

Latent Heat Thermal Energy Storage With Embedded Heat Pipes For Concentrating Solar Power Applications, Christopher Robak

Master's Theses

An innovative, novel concept of combining heat pipes with latent heat thermal energy storage (LHTES) for concentrating solar power (CSP) applications is explored. The low thermal conductivity of phase change materials (PCMs) used in LHTES presents a design challenge due to slow heat transfer rates during heating and cooling of the material. Heat pipes act to decrease the thermal resistance in the PCM, increasing the overall heat transfer rate sufficiently for use in CSP. First, a laboratory scale experiment is presented to validate the concept of using heat pipes in LHTES to reduce thermal resistance in PCM. A commercial scale …


Evaluation Of Cathode Materials For Low Temperature (500-700c) Solid Oxide Fuel Cells, Alexander M. Lassman Sep 2011

Evaluation Of Cathode Materials For Low Temperature (500-700c) Solid Oxide Fuel Cells, Alexander M. Lassman

Master's Theses

Solid oxide fuel cells (SOFC) have gained a great deal of interest, due to their potential for high efficiency power generation and ability to utilize hydrogen fuel, as well as various hydrocarbon-based fuels. A recent trend in SOFC development has been towards lower operating temperatures (500-700°C), which can substantially reduce the cost and complexity of the system. This thesis presents an investigation into state of the art Ba- and La- based cathode materials for use in low temperature (500-700°C) solid oxide fuel cells.

Synthesis of A-site deficient [A=0.97] Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) was …


Experimental And Numerical Investigations Of Tubular-Shaped Direct Methanol Fuel Cells (Dmfcs), Travis R. Ward Aug 2011

Experimental And Numerical Investigations Of Tubular-Shaped Direct Methanol Fuel Cells (Dmfcs), Travis R. Ward

Master's Theses

This study focuses on both the numerical and experimental investigations of the novel, passively operated, tubular-shaped, Direct Methanol Fuel Cell (DMFC) as an alternative geometry to the traditional planar-shaped fuel cell. The benefit of the tubular geometry compared to the planar geometry is the higher instantaneous volumetric power density provided by the larger active area, which could be beneficial in applications that require a high instantaneous power while occupying a small volume. First, a two-dimensional, two-phase, non-isothermal model was developed to investigate the steady-state performance and design characteristics of a tubular-shaped, passive DMFC. It was found that a higher ambient …


Applied Control Strategies At A Cogeneration Plant, Joseph William Burns Jun 2011

Applied Control Strategies At A Cogeneration Plant, Joseph William Burns

Master's Theses

The purpose of this paper is to demonstrate the effectiveness of “classical strategies for dynamic control” on authentic cogeneration processes. These strategies are applied to several processes at the University of Connecticut’s cogeneration plant. Case studies of their applications are presented in this paper. Strategies that are applied include the following:

1) The classical SISO feedback structure

2) The First Order Plus Dead Time (FOPDT) process model

3) The Internal Model Control (IMC) correlations for PI controller tuning

4) Static feed forward with feedback trim

5) Cascade Control


Simulation And Validation Of Two-Component Flow In A Void Recirculation System, Oscar Eduardo Daza May 2011

Simulation And Validation Of Two-Component Flow In A Void Recirculation System, Oscar Eduardo Daza

Master's Theses

Nuclear power plants rely on the Emergency Core Cooling System (ECCS) to cool down the reactor core in case of an accident. Occasionally, air is entrained into the suction piping of ECCS causing voids that decrease pumping efficiency, and consequently damage the pumps. In an attempt to minimize the amount of voids entering the suction side of the pump in ECCS, a Void Recirculation System (VRS) experiment was conducted for a proof of concept purpose. While many studies have been oriented in studying two-component flow behavior in ECCS, none of them propose a solution to minimize air entrainment. As a …


Tower-Tracking Heliostat Array, Joel T. Masters Mar 2011

Tower-Tracking Heliostat Array, Joel T. Masters

Master's Theses

This thesis presents a method of tracking and correcting for the swaying of a central receiver tower in concentrated solar production plants. The method uses a camera with image processing algorithms to detect movement of the center of the tower. A prototype was constructed utilizing a CMOS camera connected to a microcontroller to control the movements of three surrounding heliostats. The prototype uses blob-tracking algorithms to detect and correct for movements of a colored model target. The model was able to detect movements in the tower with average error of 0.32 degrees, and was able to correctly orient the surrounding …


Modeling And Numerical Investigation Of Hot Gas Defrost On A Finned Tube Evaporator Using Computational Fluid Dynamics, Oai The Ha Nov 2010

Modeling And Numerical Investigation Of Hot Gas Defrost On A Finned Tube Evaporator Using Computational Fluid Dynamics, Oai The Ha

Master's Theses

Defrosting in the refrigeration industry is used to remove the frost layer accumulated on the evaporators after a period of running time. It is one way to improve the energy efficiency of refrigeration systems. There are many studies about the defrosting process but none of them use computational fluid dynamics (CFD) simulation. The purpose of this thesis is (1) to develop a defrost model using the commercial CFD solver FLUENT to simulate numerically the melting of frost coupled with the heat and mass transfer taking place during defrosting, and (2) to investigate the thermal response of the evaporator and the …


Rayleigh Flow Of Two-Phase Nitrous Oxide As A Hybrid Rocket Nozzle Coolant, Lauren May Nelson Sep 2009

Rayleigh Flow Of Two-Phase Nitrous Oxide As A Hybrid Rocket Nozzle Coolant, Lauren May Nelson

Master's Theses

The Mechanical Engineering Department at California Polytechnic State University in San Luis Obispo currently maintains a lab-scale hybrid rocket motor for which nitrous oxide is utilized as the oxidizer in the combustion system. Because of its availability, the same two-phase (gas and liquid) nitrous oxide that is used in the combustion system is also routed around the throat of the hybrid rocket’s converging-diverging nozzle as a coolant. While this coolant system has proven effective empirically in previous tests, the physics behind the flow of the two-phase mixture is largely unexplained. This thesis provides a method for predicting some of its …


Performance Analysis And Life Prediction For Small Wind Turbine Blades: A Wood Laminate Case Study, Christopher James Nosti Aug 2009

Performance Analysis And Life Prediction For Small Wind Turbine Blades: A Wood Laminate Case Study, Christopher James Nosti

Master's Theses

A detailed study of the fatigue life of wooden wind turbine blades for a new 10 kilowatt system was undertaken. A numerical model of the blades was created using the technical software package MATLAB in order to estimate the maximum stress occurring within the blade in response to changes in wind velocities based on a wind profile approximating the location where these turbines are expected to operate. The material properties of the wooden laminate were measured using an Instron tensile test machine and were found to be in line with published values. In parallel with this effort, a three dimensional …


Design And Development Of Rapid Battery Exchange Systems For Electric Vehicles To Be Used As Efficient Student Transportation, Jonathan A. Bevier Jul 2009

Design And Development Of Rapid Battery Exchange Systems For Electric Vehicles To Be Used As Efficient Student Transportation, Jonathan A. Bevier

Master's Theses

Rapid battery exchange systems were built for an electric van and pedal assist electric bike as a method of eliminating the need to recharge the vehicles batteries in order to increase the feasibility of using electric propulsion as a method of efficient student transportation. After selecting proper materials it was found that the systems would need a protective coating to ensure consistent operation. 1020 cold rolled steel samples coated with multiple thicknesses of vinyl resin paint, epoxy resin paint, and powder coating were subjected to environmental wear tests in order to determine if the type and thickness of common protective …


Temperature Influence And Heat Management Requirements Of Microalgae Cultivation In Photobioreactors, Thomas Hagen Mehlitz Feb 2009

Temperature Influence And Heat Management Requirements Of Microalgae Cultivation In Photobioreactors, Thomas Hagen Mehlitz

Master's Theses

Microalgae are considered one of the most promising feedstocks for biofuel production for the future. The most efficient way to produce vast amounts of algal biomass is the use of closed tubular photobioreactors (PBR). The heat requirement for a given system is a major concern since the best algae growth rates are obtained between 25-30 °C, depending on the specific strain. A procedure to determine temperature influence on algal growth rates was developed for a lab-scale PBR system using the species Chlorella. A maximum growth rate of 1.44 doublings per day at 29 °C (optimal temperature) was determined. In addition, …