Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 87

Full-Text Articles in Engineering

Characterization Of Highly Doped N-Type And P-Type Silicon Carbide Ohmic Contacts, Tanner Rice Dec 2023

Characterization Of Highly Doped N-Type And P-Type Silicon Carbide Ohmic Contacts, Tanner Rice

Graduate Theses and Dissertations

Silicon Carbide (SiC) is a rather new material that possesses unparalleled properties when compared to Silicon. Due to its larger band gap alongside other thermal properties, SiC can survive in hotter, more radiation intensive environments, whether that be within the crust of the earth or in the reaches of space. As a desirable semiconductor for these applications, CMOS is an especially important device due to its low power consumption. However, creating a good contact between the metal and semiconductor optimally requires two different metals for the n -type and the p-type semiconductor. This greatly increases the processing time, as separate …


Reliability Enhancing Control Algorithms For Two-Stage Grid-Tied Inverters, Yuheng Wu Dec 2022

Reliability Enhancing Control Algorithms For Two-Stage Grid-Tied Inverters, Yuheng Wu

Graduate Theses and Dissertations

In the photovoltaic (PV) generation system, two types of grid-tied inverter systems are usually deployed: the single-stage grid-tied inverter system and the two-stage grid-tied inverter system. In the single-stage grid-tied inverter system, the input of the inverter is directly connected to the PV arrays, while an additional dc-dc stage is inserted between the PV arrays and the dc-ac inverter in the two-stage design. The additional dc-dc stage could provide a stable dc-link voltage to the inverter, which also enables new design possibilities, including the multi-MPPT operation and solar-plus-storage application. Thus, the two-stage grid-tied inverter has been widely used in the …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Hybrid Multilevel Converters With Internal Cascaded/Paralleled Structures For Mv Electric Aircraft Applications, Fei Diao Dec 2022

Hybrid Multilevel Converters With Internal Cascaded/Paralleled Structures For Mv Electric Aircraft Applications, Fei Diao

Graduate Theses and Dissertations

Using on-board medium voltage (MV) dc distribution system has been a megatrend for next-generation electric aircraft systems due to its ability to enable a significant system mass reduction. In addition, it makes electric propulsion more feasible using MV power electronic converters. To develop high-performance high-density MV power converters, the emerging silicon carbide (SiC) devices are more attractive than their silicon (Si) counterparts, since the fast switch frequency brought by the SiC can effectively reduce the volume and weight of the filter components and thus increase the converter power density. From the converter topology perspective, with the MV dc distribution, the …


Etching Process Development For Sic Cmos, Weston Reed Renfrow Aug 2022

Etching Process Development For Sic Cmos, Weston Reed Renfrow

Graduate Theses and Dissertations

Silicon Carbide (SiC) is an exciting material that is growing in popularity for having qualities that make it a helpful semiconductor in extreme environments where silicon devices fail. The development of a SiC CMOS is in its infancy. There are many improvements that need to be made to develop this technology further. Photolithography is the most significant bottleneck in the etching process; it was studied and improved upon. Etching SiC can be a challenge with its reinforced crystal structure. Chlorine-based inductively coupled plasma (ICP) etching of intrinsic SiC and doped SiC, SiO2, and Silicon has been studied. A baseline chlorine …


Study Of Thin Gan/Ingan/Gan Double Graded Structures For Future Photovoltaic Application, Mirsaeid Sarollahi Aug 2022

Study Of Thin Gan/Ingan/Gan Double Graded Structures For Future Photovoltaic Application, Mirsaeid Sarollahi

Graduate Theses and Dissertations

Indium gallium nitride (In_x Ga_(1-x) N) materials have displayed great potential for photovoltaic and optoelectronic devices due to their optical and electrical properties. Properties such as direct bandgap, strong bandgap absorption, thermal stability and high radiation resistance qualify them as great materials for photovoltaic devices. The tunable bandgap which absorbs the whole solar spectrum is the most significant feature which became attractive for scientists. The bandgap for these materials varies from 0.7 eV for InN to 3.4 eV for GaN covering from infrared to ultraviolet. In_x Ga_(1-x) N wurtzite crystal is grown on GaN buffer layer by Molecular Beam Epitaxy …


A Double-Sided Stack Low-Inductance Wire-Bondless Sic Power Module With A Ceramic Interposer, Si Huang Dec 2021

A Double-Sided Stack Low-Inductance Wire-Bondless Sic Power Module With A Ceramic Interposer, Si Huang

Graduate Theses and Dissertations

The objective of this dissertation research is to develop a novel three-dimensional (3-D) wire bondless power module package for silicon carbide (SiC) power devices to achieve a low parasitic inductance and an improved thermal performance. A half-bridge module consisting of 900-V SiC MOSFETs is realized to minimize stray parasitic inductance as well as to provide both vertical and horizontal cooling paths to maximize heat dissipation. The proposed 3-D power module package was designed, simulated, fabricated and tested. In this module, low temperature co-fired ceramic (LTCC) substrate with vias is utilized as an interposer of which both top and bottom sides …


Investigation Of Optical And Structural Properties Of Gesn Heterostructures, Oluwatobi Gabriel Olorunsola Dec 2021

Investigation Of Optical And Structural Properties Of Gesn Heterostructures, Oluwatobi Gabriel Olorunsola

Graduate Theses and Dissertations

Silicon (Si)-based optoelectronics have gained traction due to its primed versatility at developing light-based technologies. Si, however, features indirect bandgap characteristics and suffers relegated optical properties compared to its III-V counterparts. III-Vs have also been hybridized to Si platforms but the resulting technologies are expensive and incompatible with standard complementary-metal-oxide-semiconductor processes. Germanium (Ge), on the other hand, have been engineered to behave like direct bandgap material through tensile strain interventions but are well short of attaining extensive wavelength coverage. To create a competitive material that evades these challenges, transitional amounts of Sn can be incorporated into Ge matrix to form …


Distributed Modeling Approach For Electrical And Thermal Analysis Of High-Frequency Transistors, Amirreza Ghadimi Avval Jul 2021

Distributed Modeling Approach For Electrical And Thermal Analysis Of High-Frequency Transistors, Amirreza Ghadimi Avval

Graduate Theses and Dissertations

The research conducted in this dissertation is focused on developing modeling approaches for analyzing high-frequency transistors and present solutions for optimizing the device output power and gain. First, a literature review of different transistor types utilized in high-frequency regions is conducted and gallium nitride high electron mobility transistor is identified as the promising device for these bands. Different structural configurations and operating modes of these transistors are explained, and their applications are discussed. Equivalent circuit models and physics-based models are also introduced and their limitations for analyzing the small-signal and large-signal behavior of these devices are explained. Next, a model …


Design And Validation Of A High-Power, High Density All Silicon Carbide Three-Level Inverter, Zhongjing Wang Jul 2021

Design And Validation Of A High-Power, High Density All Silicon Carbide Three-Level Inverter, Zhongjing Wang

Graduate Theses and Dissertations

Transportation electrification is clearly the road toward the future. Compared to internal combustion engine, the electrified vehicle has less carbon-dioxide emission, less maintenance costs and less operation costs. It also offers higher efficiency and safety margin. More importantly, it relieves human’s dependence on conventional fossil energy. In the electrification progress, the revolution of electric traction drive systems is one of the most important milestone. The traction system should keep high efficiency to avoid performance reduction. Moreover, the motor drive should be designed within limited space without sacrificing output power rating. Based on the road map from US Drive Electrical and …


Direct Torque Control For Silicon Carbide Motor Drives, Mohammad Hazzaz Mahmud Jul 2021

Direct Torque Control For Silicon Carbide Motor Drives, Mohammad Hazzaz Mahmud

Graduate Theses and Dissertations

Direct torque control (DTC) is an extensively used control method for motor drives due to its unique advantages, e.g., the fast dynamic response and the robustness against motor parameters variations, uncertainties, and external disturbances. Using higher switching frequency is generally required by DTC to reduce the torque ripples and decrease stator current total harmonic distortion (THD), which however can lower the drive efficiency. Through the use of the emerging silicon carbide (SiC) devices, which have lower switching losses compared to their silicon counterparts, it is feasible to achieve high efficiency and low torque ripple simultaneously for DTC drives.

To overcome …


Use Of The Igbt Module In The Active Region To Design A High Current Active Filter, Jorge F. Galarraga Jul 2021

Use Of The Igbt Module In The Active Region To Design A High Current Active Filter, Jorge F. Galarraga

Graduate Theses and Dissertations

Particle accelerators require high-precision magnetic fields on the order or 100ppm or less. This implies that the precision of the associated electrical current in the electromagnet that generates these fields should be smaller than 100ppm. However, conventional switching power supplies cannot offer this precision due to the frequency limitation of the switches. This research considers the use of power electronics devices operating in a linear as an alternative solution to meet the requirements of particle accelerator electromagnets.

This thesis presents the study of an insulated-gate bipolar transistor (IGBT) driver using a new control method that linearizes the IGBT’s collector-emitter voltage …


Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran May 2021

Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran

Graduate Theses and Dissertations

Infrared (IR) radiation spans the wavelengths of the windows: (1) near-IR region ranging from 0.8 to 1.0 μm, (2) shortwave IR (SWIR) ranging from 1.0 to 3.0 μm, (3) mid-wave IR (MWIR) region covering from 3.0 to 5.0 μm, (4) longwave IR (LWIR) spanning from 8.0 to 12.0 μm, and (5) very longwave IR extending beyond 12.0 μm. The MWIR and LWIR regions are important for night vision in the military, and since the atmosphere does not absorb at these wavelengths, they are also used for free-space communications and astronomy. Automotive and defect detection in the food industry and electronic …


An Accurate And Efficient Electro-Thermal Compact Model Of Sic Power Mosfet Including Third Quadrant Behavior, Arman Ur Rashid May 2021

An Accurate And Efficient Electro-Thermal Compact Model Of Sic Power Mosfet Including Third Quadrant Behavior, Arman Ur Rashid

Graduate Theses and Dissertations

Due to narrower bandgap and lower critical electric field, silicon (Si) power devices have reached their limit in terms of the maximum blocking voltage capability. Exploiting this limitation, wide bandgap devices, namely silicon carbide (SiC) and gallium nitride (GaN) devices, are increasingly encroaching on the lucrative power electronics market. Unlike GaN, SiC devices can exploit most of the established fabrication techniques of Si power devices. Having substrate of the same material, vertical device structures with higher breakdown capabilities are feasible in SiC, unlike their GaN counterpart. Also, the excellent thermal conductivity of SiC, compared to GaN and Si, let SiC …


Analysis Of Photodetector Based On Zinc Oxide And Cesium Lead Bromide Heterostructure With Interdigital Metallization, Tanveer Ahmed Siddique May 2021

Analysis Of Photodetector Based On Zinc Oxide And Cesium Lead Bromide Heterostructure With Interdigital Metallization, Tanveer Ahmed Siddique

Graduate Theses and Dissertations

In this thesis, photodetector based on the zinc oxide and cesium lead bromide hetero structure were fabricated and characterized. Zinc oxide (ZnO) nanoparticles were synthesized using solution processing and cesium lead bromide (CsPbBr3) thin film was synthesized using two step deposition method. Three phonon modes were obtained by the Raman spectroscopy of ZnO nanoparticles. X-ray diffraction spectra of ZnO exhibits five exciton peaks which denotes that the synthesized ZnO structure was of good crystallinity with wurtzite hexagonal phase. The absorbance spectrum of ZnO shows the bandgap (Eg) in the order of 3.5 eV that aligns with reported results. The photoluminescence …


Design, Fabrication, And Reliability Effects Of Additively Manufactured First Level Compliant Interconnects For Microelectronics Application, Tumininu David Olatunji Dec 2020

Design, Fabrication, And Reliability Effects Of Additively Manufactured First Level Compliant Interconnects For Microelectronics Application, Tumininu David Olatunji

Graduate Theses and Dissertations

Semiconductor packaging and development is greatly dependent on the magnitude of interconnect and on-chip stress that ultimately limits the reliability of electronic components. Thermomechanical related strains occur because of the coefficient of thermal expansion mismatch from different conjoined materials being assembled to manufacture a device. To curb the effect of thermal expansion mismatch between conjoined parts, studies have been done in integrating compliant structures between dies, solder balls, and substrates. Initial studies have enabled the design and manufacturing of these structures using a photolithography approach which involves a high number of fabrication steps depending on the complexity of the structures …


Growth And Characterization Of Semiconductor Materials And Devices For Extreme Environments Applications, Abbas Sabbar Dec 2020

Growth And Characterization Of Semiconductor Materials And Devices For Extreme Environments Applications, Abbas Sabbar

Graduate Theses and Dissertations

Numerous industries require electronics to operate reliably in harsh environments, such as extreme high temperatures (HTs), low temperature (LT), radiation rich environments, multi-extreme, etc. This dissertation is focused on two harsh environments: HT and multi-extreme.

The first study is on HT optoelectronics for future high-density power module applications. In the power modules design, galvanic isolation is required to pass through the gate control signal, reject the transient noise, and break the ground loops. The optocoupler, which consists of a lighting emitting diode (LED) and photodetector (PD), is commonly used as the solution of galvanic isolation at room temperatures. There is …


Fourier Transform Infrared Spectroscopy For The Measurement Of Gesn/(Si)Gesn, Solomon Opeyemi Ojo Dec 2020

Fourier Transform Infrared Spectroscopy For The Measurement Of Gesn/(Si)Gesn, Solomon Opeyemi Ojo

Graduate Theses and Dissertations

Photoluminescence (PL) and Electroluminescence (EL) characterization techniques are important tools for studying the optical and electrical properties of (Si)GeSn. Light emission from these PL and EL measurements provides relevant information on material quality, bandgap energy, current density, and device efficiency. Prior to this work, the in-house PL set-up of this lab which involves the use of a commercially-obtained dispersive spectrometer was used for characterizing both GeSn thin film and fabricated devices, but these measurements were limited by issues bordering on low spectral resolution, spectral artifacts, and poor signal-to-noise ratio (SNR) thereby resulting in the possible loss of vital information and …


High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan Dec 2020

High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan

Graduate Theses and Dissertations

Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in …


Design Of A 350 Kw Silicon Carbide Based 3-Phase Inverter With Ultra-Low Parasitic Inductance, Matthew Feurtado Dec 2020

Design Of A 350 Kw Silicon Carbide Based 3-Phase Inverter With Ultra-Low Parasitic Inductance, Matthew Feurtado

Graduate Theses and Dissertations

The objective of this thesis is to present a design for a low parasitic inductance, high power density 3-phase inverter using silicon-carbide power modules for traction application in the electric vehicles with a power rating of 350 kW. With the market share of electric vehicles continuing to grow, there is a great opportunity for wide bandgap semiconductors such as silicon carbide (SiC) to improve the efficiency and size of the motor drives in these applications. In order to accomplish this goal, careful design and selection of each component in the system for optimum performance from an electrical, mechanical, and thermal …


Synthesis And Application Of Ceramic Paste For High-Temperature Electronic Packaging, Ardalan Nasiri Jul 2020

Synthesis And Application Of Ceramic Paste For High-Temperature Electronic Packaging, Ardalan Nasiri

Graduate Theses and Dissertations

This dissertation research focused on the synthesis and application of ceramic paste for high-temperature applications. An alumina paste material comprising aluminum dihydric phosphate and alumina powder was developed for high-temperature electronic packaging. Nano aluminum nitride and nano-silica powders were embedded to promote the paste curing process, limit the grain growth, and increase its bond shear strength. The chip-to-substrate bond strength was enhanced and met the MIL-STD requirements for die-attach assembly. Its encapsulation property was improved with fewer cracks compared to similar commercial ceramic encapsulants. The die-attach material and encapsulation properties tested at 500°C showed no defect or additional cracks. Thermal …


Design And Optimization Of Multichip Gan Module Enabling Improved Switching Performance, Asif Imran Emon Jul 2020

Design And Optimization Of Multichip Gan Module Enabling Improved Switching Performance, Asif Imran Emon

Graduate Theses and Dissertations

Wide bandgap semiconductors (SiC & GaN) due to their enhanced performance and superior material properties compared to traditional silicon power devices have become the ultimate choice for future high-performance power electronics energy conversion. GaN high electron mobility transistor (HEMT) offers very fast switching capability enabling the designer to push switching frequency to the MHz range. Traditional device packaging becomes a limiting factor in fully harnessing the benefits offered by these advanced power devices, and thus, improved and advanced packaging structures are a must to bridge the gap between GaN devices and their applications. A co-design, co-optimization method has been followed …


Converter- And Module-Level Packaging For High Power Density And High Efficiency Power Conversion, Amol Rajendrakumar Deshpande Jul 2020

Converter- And Module-Level Packaging For High Power Density And High Efficiency Power Conversion, Amol Rajendrakumar Deshpande

Graduate Theses and Dissertations

Advancements in the converter- and module-level packaging will be the key for the development of the emerging high-power, high power-density, high-eciency power conversion applications, such as traction, shipboards, more-electric-aircraft, and locomotive. Wide bandgap (WBG) devices such as silicon carbide (SiC) MOSFET attract much attention in these applications for their fast switching speeds, resulting in low loss and a consequent possibility for high switching frequency to increase the power density. However, for high-current, high power implementations, WBG devices are still available in small die sizes. Multiple SiC devices need to be connected in parallel to replace a large IGBT die. It …


Design Of Submicron Structured Guided-Mode-Resonance Near-Infrared Polarizer, Marzia Zaman May 2020

Design Of Submicron Structured Guided-Mode-Resonance Near-Infrared Polarizer, Marzia Zaman

Graduate Theses and Dissertations

The objective of this research is to design a larger submicron linear polarizer in the near-infrared wavelength range with a wide bandwidth which can be fabricated using the conventional thin-film microfabrication technology to reduce cost. For this purpose, a gold (Au) wire-grid transmission-type transverse-magnetic (TM) polarizer and a silicon (Si) wire-grid reflection-type TM polarizer, were designed using the guided-mode-resonance filter. The Au wire-grid TM polarizer of 700nm grating width and 1200nm grating period has 95% transmittance at 2400nm, more than 1000nm resonance peak bandwidth, and an extinction ratio (ER) of around 300 with a moderated level of sidebands. The 700nm …


Design And Optimization Of A High Power Density Silicon Carbide Traction Inverter, Tyler Adamson Dec 2019

Design And Optimization Of A High Power Density Silicon Carbide Traction Inverter, Tyler Adamson

Graduate Theses and Dissertations

This project was initiated with the goal of demonstrating a 3-phase silicon carbide based 150-kW 25 kW/L DC-AC power conversion unit capable of operation with coolant temperatures up to 90°C. The project goals were met and exceeded by first analyzing the established inverter topologies to find which one would yield the highest power density while still meeting electrical performance needs in the 150-kW range. Following topology selection, the smallest silicon carbide power module that met the electrical requirements of the system was found through experimental testing and simulation. After a power module selection was finalized, a DC link capacitor bank …


Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz Dec 2019

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz

Graduate Theses and Dissertations

Microdialysis (µD) sampling is a diffusion-limited sampling method that has been widely used in different biomedical fields for greater than 35 years. Device calibration for in vivo studies is difficult for current non-steady state analytes of interest correlated with both inflammatory response and microbial signaling molecules (QS); which exist in low ng/mL to pg/mL with molecular weights over a wide range of 170 Da to 70 kDa. The primary performance metric, relative recovery (RR), relating the collected sample to the extracellular space concentration varies from 10% to 60% per analyte even under controlled bench-top conditions. Innovations in microdialysis device design …


Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo Dec 2019

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo

Graduate Theses and Dissertations

Noble metal nanoparticles and two-dimensional (2D) transition metal dichalcogenide (TMD) crystals offer unique optical and electronic properties that include strong exciton binding, spin-orbital coupling, and localized surface plasmon resonance. Controlling these properties at high spatiotemporal resolution can support emerging optoelectronic coupling and enhanced optical features. Excitation dynamics of these optical properties on physicochemically bonded mono- and few-layer TMD crystals with metal nanocrystals and two overlapping spherical metal nanocrystals were examined by concurrently (i) DDA simulations and (ii) far-field optical transmission UV-vis spectroscopic measurements. Initially, a novel and scalable method to unsettle van der Waals bonds in bulk TMDs to prepare …


High Frequency Ltcc Based Planar Transformer, Adithya Venkatanarayanan Dec 2019

High Frequency Ltcc Based Planar Transformer, Adithya Venkatanarayanan

Graduate Theses and Dissertations

As we move towards high power and higher frequency related technology, conventional wire-wound magnetics have their own limitations which has led path to the development of planar based magnetic materials. Nowadays more planar magnetic technology has been employed because it is easier to fabricate them. The planar magnetic is a transformer or an inductor that replaces the wire-wound transformer or inductors which generally uses copper wires. One of the main reasons why we move to planar magnetic technology is its operation at higher frequency which provides higher power density. This study explains in detail about the design and fabrication of …


Switching Trajectory Control For High Voltage Silicon Carbide Power Devices With Novel Active Gate Drivers, Shuang Zhao Aug 2019

Switching Trajectory Control For High Voltage Silicon Carbide Power Devices With Novel Active Gate Drivers, Shuang Zhao

Graduate Theses and Dissertations

The penetration of silicon carbide (SiC) semiconductor devices is increasing in the power industry due to their lower parasitics, higher blocking voltage, and higher thermal conductivity over their silicon (Si) counterparts. Applications of high voltage SiC power devices, generally 10 kV or higher, can significantly reduce the amount of the cascaded levels of converters in the distributed system, simplify the system by reducing the number of the semiconductor devices, and increase the system reliability.

However, the gate drivers for high voltage SiC devices are not available on the market. Also, the characteristics of the third generation 10 kV SiC MOSFETs …


Five-Level Flying Capacitor Converter Used As A Static Compensator For Current Unbalances In Three-Phase Distribution Systems, Rafael Franceschi Aug 2019

Five-Level Flying Capacitor Converter Used As A Static Compensator For Current Unbalances In Three-Phase Distribution Systems, Rafael Franceschi

Graduate Theses and Dissertations

This thesis presents and evaluates a solution for unbalanced current loading in three-phase distribution systems. The proposed solution uses the flying capacitor multilevel converter as its main topology for an application known as Unbalanced Current Static Compensator. The fundamental theory, controller design and prototype construction will be presented along with the experimental results. The Unbalanced Current Static Compensator main objective is the balancing of the up-stream currents from the installation point to eliminate the negative- and zero-sequence currents originated by unbalanced single-phase loads.

Three separate single-phase flying capacitor converters are controlled independently using a d-q rotating reference frame algorithm to …