Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Electrophertic Deposition And Characterization Of Molybdenum Disulfide On Silicon Substrates, Alex J. Young Nov 2023

Electrophertic Deposition And Characterization Of Molybdenum Disulfide On Silicon Substrates, Alex J. Young

LSU Doctoral Dissertations

The electrical characteristics of 2D materials such as high electron mobility and current density are of great interest to various fields from optoelectronics to renewable energy. Researchers have focused their efforts on transition metal dichalcogenides (TMDCs) due to their direct energy band gap. One such TMDC that has garnered much attention is molybdenum disulfide (MoS2). MoS2 has electrical properties comparable to graphene and is a TMDC with characteristics amenable to applications such as solar cells and sensors. Commonly deposited through time-consuming and complex deposition methods such as chemical vapor deposition (CVD), the viability of MoS2 as an electronic material will …


Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas Nov 2022

Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas

LSU Doctoral Dissertations

Molecular detection techniques have huge potential in clinical environments. In addition to many other molecular detection techniques, endoscopic Raman spectroscopy has great ability in terms of minimal invasiveness and real-time spectra acquisition. However, Raman Effect is low in sensitivity, limiting the application. Surface-Enhanced Raman Scattering (SERS), addresses this limitation. SERS brings rough nano-metallic surfaces in contact with specimen molecules which enormously enhances Raman signals. This provides Raman spectroscopy with immense capabilities for diverse fields of applications.

Generally, in clinical probe applications, the spectrometer is brought near the target molecules for detection. Typically, optical fibers are used to couple spectrometers to …


Design Tunneling Transistor And Schottky Junction Solar Cell Using Van Der Waals Semiconductor Heterostructure, Md Azmot Ullah Khan Jul 2022

Design Tunneling Transistor And Schottky Junction Solar Cell Using Van Der Waals Semiconductor Heterostructure, Md Azmot Ullah Khan

LSU Doctoral Dissertations

Transition metal di-chalcogenide (TMDC) materials, being semiconductor in nature, offer Two-dimensional (2D) materials such as graphene and molybdenum disulfide (MoS2) possess unique and unusual properties that are particularly applicable to nanoelectronics and photovoltaic devices. In this dissertation, four different projects have been done that encompass the implementation of these materials to improve the performance of future transistors and Schottky junction solar cells. In chapter 2, an analytical current transport model of a dual gate tunnel field-effect transistor (TFET) is developed by utilizing the principle of band-to-band tunneling (BTBT) and MoS2 as the channel material. Later, using this …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


Design And Fabrication Of A Low-Cost, Portable, Battery-Operated Surface Enhanced Raman Scattering (Sers) Optical Device, Blessing Adewumi Jan 2022

Design And Fabrication Of A Low-Cost, Portable, Battery-Operated Surface Enhanced Raman Scattering (Sers) Optical Device, Blessing Adewumi

LSU Doctoral Dissertations

Raman Spectroscopy is a time-honored, non-invasive method for analyzing and identifying the molecular composition of materials. However, unenhanced Raman Spectroscopy has extremely low sensitivity which limits its sensing capability. SERS brings rough nano-metallic surfaces in contact with the material molecules to enormously enhance the Raman signals.

The sensitivity of SERS can be exploited in probe applications where the spectrometer needs to be brought near the specimen. For example, a long optical fiber coupled to a SERS device can be used to characterize and identify easy-to-reach cancerous tissues in organisms. Unfortunately, background signals in a long fiber can easily mask any …


Noble-Transition Alloy Absorbers For Near-Infrared Hot-Carrier Optoelectronics, Sara Karoline Figueiredo Stofela Jan 2020

Noble-Transition Alloy Absorbers For Near-Infrared Hot-Carrier Optoelectronics, Sara Karoline Figueiredo Stofela

LSU Doctoral Dissertations

Optoelectronics is the field of technology concerned with the study and application of electronic devices that source, detect and control light. Here we focus on the optical communications field which relies on optical fiber systems to carry signals to their destinations operating in the near-infrared range. To improve the performance of current optical fiber systems, one of the paths is to develop better near-infrared photodetectors.

The current group of materials used for near-infrared photodetection relies in the III-V semiconductor family. Although their spectral photosensitivity correlates well with the near-infrared, response time performance and electronic circuit integration remain limited for this …


Thermal And Mechanical Energy Harvesting Using Lead Sulfide Colloidal Quantum Dots, Taher Ghomian Oct 2018

Thermal And Mechanical Energy Harvesting Using Lead Sulfide Colloidal Quantum Dots, Taher Ghomian

LSU Doctoral Dissertations

The human body is an abundant source of energy in the form of heat and mechanical movement. The ability to harvest this energy can be useful for supplying low-consumption wearable and implantable devices. Thermoelectric materials are usually used to harvest human body heat for wearable devices; however, thermoelectric generators require temperature gradient across the device to perform appropriately. Since they need to attach to the heat source to absorb the heat, temperature equalization decreases their efficiencies. Moreover, the electrostatic energy harvester, working based on the variable capacitor structure, is the most compatible candidate for harvesting low-frequency-movement of the human body. …


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik May 2018

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the …


Modeling Of Thermally Aware Carbon Nanotube And Graphene Based Post Cmos Vlsi Interconnect, K M Mohsin Nov 2017

Modeling Of Thermally Aware Carbon Nanotube And Graphene Based Post Cmos Vlsi Interconnect, K M Mohsin

LSU Doctoral Dissertations

This work studies various emerging reduced dimensional materials for very large-scale integration (VLSI) interconnects. The prime motivation of this work is to find an alternative to the existing Cu-based interconnect for post-CMOS technology nodes with an emphasis on thermal stability. Starting from the material modeling, this work includes material characterization, exploration of electronic properties, vibrational properties and to analyze performance as a VLSI interconnect. Using state of the art density functional theories (DFT) one-dimensional and two-dimensional materials were designed for exploring their electronic structures, transport properties and their circuit behaviors. Primarily carbon nanotube (CNT), graphene and graphene/copper based interconnects were …