Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 82

Full-Text Articles in Engineering

Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner Dec 2017

Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner

Graduate Theses and Dissertations

This thesis presents the free-space measurements of a periodic metamaterial structure. The metamaterial unit cell consists of two dielectric sheets intersecting at 90 degrees. The dielectric is a polyetherimide-based material 0.001” thick. Each sheet has a copper capacitively-loaded loop (CLL) structure on the front and a cut-wire structure on the back. Foam material is used to support the unit cells. The unit cell repeats 40 times in the x-direction, 58 times in the y-direction and 5 times in the z-direction. The sample measures 12” × 12” × 1” in total. We use a free-space broadband system comprised of a pair …


Modeling And Simulation Of Iii-Nitride-Based Solar Cells Using Nextnano®, Malak Refaei Dec 2017

Modeling And Simulation Of Iii-Nitride-Based Solar Cells Using Nextnano®, Malak Refaei

Graduate Theses and Dissertations

Nextnano³ software is a well-known package for simulating semiconductor band-structures at the nanoscale and predicting the general electronic structure. In this work, it is further demonstrated as a viable tool for the simulation of III-nitride solar cells. In order to prove this feasibility, the generally accepted solar cell simulation package, PC1D, was chosen for comparison. To critique the results from both PC1D and Nextnano3, the fundamental drift-diffusion equations were used to calculate the performance of a simple p-n homojunction solar cell device analytically. Silicon was picked as the material for this comparison between the outputs of the two simulators as …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov Dec 2017

Speckle Effects In Target-In-The-Loop Laser Beam Projection Systems, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

In target-in-the-loop laser beam projection scenarios typical of remote sensing, directed energy, and adaptive optics applications, a transmitted laser beam propagates through an optically inhomogeneous medium toward a target, scatters off the target’s rough surface, and returns back to the transceiver plane. Coherent beam scattering off the randomly rough surface results in strong speckle modulation in the transceiver plane. This speckle modulation has been a long-standing challenge that limits performance of remote sensing, active imaging, and adaptive optics techniques. Using physics-based models of laser beam scattering off a randomly rough surface, we show that received speckle-field spatial and temporal characteristics …


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Dec 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window.

The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video …


A High Accuracy Microwave Radiometric Thermometer To Measure Internal Body Temperature, Michael D. Grady Nov 2017

A High Accuracy Microwave Radiometric Thermometer To Measure Internal Body Temperature, Michael D. Grady

USF Tampa Graduate Theses and Dissertations

The Center for Disease Control and Prevention (CDC) released heat illness data which highlighted that ~29 heat stress hospitalizations and ~3 heat-related deaths occurred every day during the summer months within the US from years 2000 to 2014. Heatstroke- the most severe form of heat illness which oftentimes lead to death- has been cited to be entirely preventable if a timely intervention is introduced. This dissertation uses microwave radiometric thermometry to perform wireless non-invasive internal body temperature monitoring which can enable intervention methods that help to prevent deaths associated with heat-illness.

Overall, this dissertation develops a comprehensive closed-form analytical radiometric …


Direct Digital Manufacturing Of Multi-Layer Wideband Ku-Band Patch Antennas, Merve Kacar Nov 2017

Direct Digital Manufacturing Of Multi-Layer Wideband Ku-Band Patch Antennas, Merve Kacar

USF Tampa Graduate Theses and Dissertations

Design and performance of fully-printed Ku-band aperture coupled patch antennas fabricated by a direct digital manufacturing (DDM) approach that integrates fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) thermoplastic with in-situ micro-dispensing of conductive silver paste (CB028) are reported. Microstrip line characterizations are performed and demonstrate that misalignment of ABS substrate deposition direction with microstrip line micro-dispensing direction can degrade the effective conductivity up to 60% within the Ku-band, and must be taken into consideration in antenna array feed network designs. Specically, over 125 µm thick ABS substrate, RF loss of 0.052 dB/mm is obtained at 18 GHz, demonstrating …


Design Of Post-Consumer Modification Of Standard Solar Modules To Form Large-Area Building-Integrated Photovoltaic Roof Slates, Joshua M. Pearce, Jay Meldrum, Nolan Osborne Nov 2017

Design Of Post-Consumer Modification Of Standard Solar Modules To Form Large-Area Building-Integrated Photovoltaic Roof Slates, Joshua M. Pearce, Jay Meldrum, Nolan Osborne

Department of Materials Science and Engineering Publications

Building-integrated photovoltaic (BIPV) systems have improved aesthetics but generally cost far more than conventional PV systems because of small manufacturing scale. Thus, in the short and medium term, there is a need for a BIPV mounting system that utilizes conventional modules. Such a design is provided here with a novel modification of conventional photovoltaic (PV) modules to allow them to act as BIPV roofing slates. The open-source designs for the mechanical components necessary to provide the post-consumer conversion for a conventional PV module are provided, and prototypes are fabricated and installed on a mock roof system along with control modules …


Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber Nov 2017

Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber

USF Tampa Graduate Theses and Dissertations

In the nanoscale metrology industry, there is a need for low-cost instruments, which have the ability to probe the structrure and elemental composition of thin films. This dissertation, describes the research performed to design and simulate a miniature Cylindrical Mirror Analyzer, (CMA), and Auger Electron Spectrometer, (AES). The CMA includes an integrated coaxial thermionic electron source. Electron optics simulations were performed using the Finite Element Method, (FEM), software COMSOL. To address the large Secondary Electron, (SE), noise, inherent in AES spectra, this research also included experiments to create structures in materials, which were intended to suppress SE backgound noise in …


Design And Modeling Of A High-Power Periodic Spiral Antenna With An Integrated Rejection Band Filter, Jonathan M. O'Brien Nov 2017

Design And Modeling Of A High-Power Periodic Spiral Antenna With An Integrated Rejection Band Filter, Jonathan M. O'Brien

USF Tampa Graduate Theses and Dissertations

This work details the design and fabrication of an ultra-wideband periodic spiral antenna (PSA) with a notch filter embedded directly into the radiating aperture. Prototype fabrication of the PSA reveals long assembly time due to forming the antenna element, therefore modifications are made to allow fabricating the antenna elements on a thin, flexible, Polyimide substrate. A transmission line model is develop to support the updated configuration of the antenna elements. In addition, a symmetric spurline filter is integrated into the arms of the spiral antenna in order to address the common problem of interference in ultra-wideband systems. For the first …


Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov Nov 2017

Analysis Of The Joint Impact Of Atmospheric Turbulence And Refractivity On Laser Beam Propagation, Victor A. Kulikov, Mikhail Vorontsov

Electro-Optics and Photonics Faculty Publications

A laser beam propagation model that accounts for the joint effect of atmospheric turbulence and refractivity is introduced and evaluated through numerical simulations. In the numerical analysis of laser beam propagation, refractive index inhomogeneities along the atmospheric propagation path were represented by a combination of the turbulence-induced random fluctuations described in the framework of classical Kolmogorov turbulence theory and large-scale refractive index variations caused by the presence of an inverse temperature layer. The results demonstrate that an inverse temperature layer located in the vicinity of a laser beam’s propagation path may strongly impact the laser beam statistical characteristics including the …


Origami Reconfigurable Electromagnetic Systems, Shun Yao Nov 2017

Origami Reconfigurable Electromagnetic Systems, Shun Yao

FIU Electronic Theses and Dissertations

With the ever-increasing demand for wireless communications, there is a great need for efficient designs of electromagnetic systems. Reconfigurable electromagnetic systems are very useful because such designs can provide multi-functionality and support different services. The geometrical topology of an electromagnetic element is very important as it determines the element’s RF performance characteristics. Origami geometries have significant advantages for launch-and-carry electromagnetic devices where devices need to fold in order to miniaturize their size during launch and unfold in order to operate after the platform has reached orbit.

This dissertation demonstrates a practical process for designing reconfigurable electromagnetic devices using origami structures. …


Technobiology Paradigm In Nanomedicine: Treating Cancer With Magnetoelectric Nanoparticles, Emmanuel Stimphil Nov 2017

Technobiology Paradigm In Nanomedicine: Treating Cancer With Magnetoelectric Nanoparticles, Emmanuel Stimphil

FIU Electronic Theses and Dissertations

Today, cancer is the world’s deadliest disease. Despite significant progress to find a cure, especially over the last decade, with immunotherapy rapidly becoming the state of the art, major open questions remain. Each successful therapy is not only limited to a few cancers but also has relatively low specificity to target cancer cells; although cancer cells can indeed be eradicated, many normal cells are sacrificed as collateral damage. To fill this gap, we have developed a class of multiferroic nanostructures known as magnetoelectric nanoparticles (MENs) that can be used to enable externally controlled high-specificity targeted delivery and release of therapeutic …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Electrostatic Sail - Tether Deployment Testbed, Davis Hunter Oct 2017

Electrostatic Sail - Tether Deployment Testbed, Davis Hunter

Von Braun Symposium Student Posters

No abstract provided.


Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway Oct 2017

Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway

FIU Electronic Theses and Dissertations

A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides …


Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami Sep 2017

Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami

Physics & Astronomy ETDs

Nano-scale optoelectronic devices have gained significant attention in recent years. Among these devices are semiconductor nanowires, whose dimeters range from 100 to 200 nm. Semiconductor nanowires can be utilized in many different applications including light-emitting diodes and laser diodes. Higher surface to volume ratio makes nanowire-based structures potential candidates for the next generation of photodetectors, sensors, and solar cells. Core-shell light-emitting diodes based on selective-area growth of gallium nitride (GaN) nanowires provide a wide range of advantages. Among these advantages are access to non-polar m-plane sidewalls, higher active region area compared to conventional planar structures, and reduction of threading …


Spin-Imbalance In A 2d Fermi-Hubbard System, Peter Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David Huse, Waseem Bakr Sep 2017

Spin-Imbalance In A 2d Fermi-Hubbard System, Peter Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir Kondov, Ehsan Khatami, Thereza Paiva, Nandini Trivedi, David Huse, Waseem Bakr

Faculty Publications

The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping the low-temperature …


Spatial Division Multiplexing Using Ince-Gaussian Beams, Sahil Sakpal Aug 2017

Spatial Division Multiplexing Using Ince-Gaussian Beams, Sahil Sakpal

Electrical Engineering Theses and Dissertations

In space division multiplexing (SDM) the spatial modes of a multimode optical fiber are used as individual data channels. SDM gives another degree of freedom over wavelength for increasing data transmission rates. As a result, SDM is a potential solution for more than 400Gbit/s requirements in data centers where scaling data transmission rates with parallel single mode optical fibers is currently ubiquitous. However, due to mode coupling, i.e., spatial modes exchange of power, SDM may require multiple inputs multiple output digital signal processing (MIMO-DSP) to mitigate resulting mode crosstalk, the cost and complexity of which may be prohibited in data …


Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu Aug 2017

Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are useful tools to analyze brain activities given active stimulation. However, the electromagnetic noise from the MRI distorts the brain signal recording and damages the subject with excessive heat generated on the electrodes attached to the skin. MRI-compatible recording and stimulation systems previously developed at LIBI lab were capable of removing the electromagnetic noise during the imaging process. Previously, the hardware systems had required the integrative software that could control both circuits simultaneously and enable users to easily change recording and stimulation parameters. Graphical user interface (GUI) programmed with computer language informed …


Quantum And Classical Optics Of Plasmonic Systems: 3d/2d Materials And Photonic Topological Insulators, Seyyed Ali Hassani Gangaraj Aug 2017

Quantum And Classical Optics Of Plasmonic Systems: 3d/2d Materials And Photonic Topological Insulators, Seyyed Ali Hassani Gangaraj

Theses and Dissertations

At the interface of two different media such as metal and vacuum, light can couple to the electrons of the metal to form a wave that is bound to the interface. This wave is called a surface plasmon-plariton (SPP), generally characterized by intense fields that decay quickly away from the interface. Due to their unique properties, SPPs have found a broad range of applications in various areas of science, including light harvesting, medical science, energy transfer and imaging. In addition to the widely studied classical plasmonics, quantum plasmonics is also attracting considerable interest in the electromagnetics and quantum optics communities. …


Two Senior Projects: 2.4 Ghz, 40% Efficiency Radio Frequency Amplifier, Ieee Design Contest, & Design And Implementation Of A Software Costas Loop For Audio Frequencies, Robert J. Tong Aug 2017

Two Senior Projects: 2.4 Ghz, 40% Efficiency Radio Frequency Amplifier, Ieee Design Contest, & Design And Implementation Of A Software Costas Loop For Audio Frequencies, Robert J. Tong

Electrical Engineering

How to Read this Document:

This document combines two senior project reports. The first senior project documents designing a class AB RF amplifier. The second, discusses the design and implementation of a software Costas loop for audio frequencies. The first report begins on the next page, while the Costas loop report starts on page 24. The two reports are orthogonal from one another. It is not a prerequisite to read the RF amplifier report before reading the Costas loop report. This document is merely two reports combined into one document. The second report, about the Costas loop, was written as …


Optimization Of Miniaturized Resonant Microwave Cavities For Use In Q-Thrusters, Joshua Steven Pennington Aug 2017

Optimization Of Miniaturized Resonant Microwave Cavities For Use In Q-Thrusters, Joshua Steven Pennington

Graduate Theses and Dissertations

A gedankenexperiment was considered to compare a hypothetical thruster that used no reaction mass to propulsion methods currently in use. A brief discussion of previous research work done on closed resonant cavity thrust devices was conducted. Using the previous work as a template, a simulation plan was devised. Computational models of resonant microwave cavities were constructed and investigated using COMSOL software. These COMSOL simulations were verified against known analytical solutions using Matlab software as a computational tool. Multiphysics simulations were created to study the microwave heating environment of the resonant cavities. From the COMSOL study outputs, the electromagnetic field magnitude, …


Si-Based Germanium Tin Semiconductor Lasers For Optoelectronic Applications, Sattar H. Sweilim Al-Kabi Aug 2017

Si-Based Germanium Tin Semiconductor Lasers For Optoelectronic Applications, Sattar H. Sweilim Al-Kabi

Graduate Theses and Dissertations

Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. …


On-Chip Training Of Memristor Crossbar Based Multi-Layer Neural Networks, Raqibul Hasan, Tarek M. Taha, Christopher Yakopcic Aug 2017

On-Chip Training Of Memristor Crossbar Based Multi-Layer Neural Networks, Raqibul Hasan, Tarek M. Taha, Christopher Yakopcic

Electrical and Computer Engineering Faculty Publications

Memristor crossbar arrays carry out multiply-add operations in parallel in the analog domain, and so can enable neuromorphic systems with high throughput at low energy and area consumption. On-chip training of these systems have the significant advantage of being able to get around device variability and faults. This paper presents on-chip training circuits for multi-layer neural networks implemented using a single crossbar per layer and two memristors per synapse. Using two memristors per synapse provides double the synaptic weight precision when compared to a design that uses only one memristor per synapse. Proposed on-chip training system utilizes the back propagation …


Laser-Assisted Metal Organic Chemical Vapor Deposition Of Gallium Nitride, Hossein Rabiee Golgir Jul 2017

Laser-Assisted Metal Organic Chemical Vapor Deposition Of Gallium Nitride, Hossein Rabiee Golgir

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Due to its unique properties, gallium nitride is of great interest in industry applications including optoelectronics (LEDs, diode laser, detector), high power electronics, and RF and wirelss communication devices. The inherent shortcomings of current conventional deposition methods and the ever-increasing demand for gallium nitride urge extended efforts for further enhancement of gallium nitride deposition. The processes of conventional methods for gallium nitride deposition, which rely on thermal heating, are inefficient energy coupling routes to drive gas reactions. A high deposition temperature (1000-1100 °C) is generally required to overcome the energy barriers to precursor adsorption and surface adatom migration. However, there …


Microwave Interferometry Diagnostic Applications For Measurements Of Explosives, Loren A. Kline Jul 2017

Microwave Interferometry Diagnostic Applications For Measurements Of Explosives, Loren A. Kline

Master's Theses

Microwave interferometry (MI) is a Doppler based diagnostic tool used to measure the detonation velocity of explosives, which has applications to explosive safety. The geometry used in existing MI experiments is cylindrical explosives pellets layered in a cylindrical case. It is of interest to Lawrence Livermore National Labs to measure additional geometries that may be overmoded, meaning that the geometries propagate higher-order transverse electromagnetic waves. The goal of my project is to measure and analyze the input reflection from a novel structure and to find a good frequency to use in an experiment using this structure. Two methods of determining …


Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore Jun 2017

Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore

Russell C. Hardie

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a …


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jun 2017

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …