Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Uncertainties In Retrieval Of Remote Sensing Reflectance From Ocean Color Satellite Observations, Eder I. Herrera Estrella Sep 2023

Uncertainties In Retrieval Of Remote Sensing Reflectance From Ocean Color Satellite Observations, Eder I. Herrera Estrella

Dissertations, Theses, and Capstone Projects

Ocean Color radiometry uses remote sensing to interpret ocean dynamics by retrieving remote sensing reflectance (π‘…π‘Ÿπ‘ ) from satellite imagery at different scales and over different time periods. π‘…π‘Ÿπ‘  spectrum characterizes the ocean color that we observe, and from which we can discern concentrations of chlorophyll, organic and inorganic particles, and carbon fluxes in the ocean and atmosphere. π‘…π‘Ÿπ‘  is derived from the total radiance at the top of the atmosphere (TOA). However, it only represents up to ten percent of the total signal. Hence, the retrieval of π‘…π‘Ÿπ‘  from the total radiance at TOA involves the application of atmospheric correction …


Wave Engineering In Time Modulated, Nonlinear, And Anisotropic Metamaterials, Ahmed Mekawy Jan 2022

Wave Engineering In Time Modulated, Nonlinear, And Anisotropic Metamaterials, Ahmed Mekawy

Dissertations and Theses

Leveraging wave matter interactions is central to a myriad of electromagnetic wave-based applications. During the past decades, research on extreme wave manipulation has been revolutionized by artificially engineered materials (metamaterials) and by adding new aspects to the wave-matter interactions that showed intriguing results inaccessible in conventional linear, time invariant (LTI), passive and isotropic media. In this work, I will explore, numerically and experimentally, the possibility of realizing devices that perform beyond or close to their fundamental LTI limitations by adding periodic modulation, nonlinearity, and gain. I will demonstrate these concepts at radio frequencies (RF) and at optical frequencies. Specifically, at …


Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer Jan 2022

Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer

Dissertations and Theses

This thesis focuses on the key nonlinear optical effects that arise from the interactions of intense ultrafast laser pulses with various states of matter. These interactions involve electronic and molecular states and yield new information on the underlying fundamental processes that govern the molecular world. Modern day lasers offer ultrashort pulses, high intensities, and complex polarizations and wavefronts. These extreme conditions have profound effect on the optical properties and behaviors of electronic and molecular states within a material. The changes in these mechanisms effect generation of nonlinear optics, such supercontinuum (SC), stimulated Raman (SRS), self-focusing and filamentation, conical emission (CE), …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Innovative Applications Of Laser Remote Sensing Of Gases, Aerosols And Wind, Adrian Diaz Fortich Jan 2020

Innovative Applications Of Laser Remote Sensing Of Gases, Aerosols And Wind, Adrian Diaz Fortich

Dissertations and Theses

Over the years, a major component of the research carried out at the Optical Remote Sensing Laboratory of the City College of New York has been on active sensing technologies and their different applications in atmospheric studies. This thesis builds upon and looks to further advance this field by demonstrating innovative applications of laser remote sensing technologies for studies involving trace gases, aerosol particles and wind; which are key components of the Earth’s atmosphere. First, we present the demonstration of gas concentration measurements using a quantum cascade laser open path system with characteristics that make it promising for mobile and/or …


Understanding Adversarial Training: Improve Image Recognition Accuracy Of Convolution Neural Network, Naoki Ishibashi Jan 2017

Understanding Adversarial Training: Improve Image Recognition Accuracy Of Convolution Neural Network, Naoki Ishibashi

Dissertations and Theses

Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits. Recently many researchers work on Convolution Neural Network for image recognition, and get results as good as human being. Additionally, Image recognition task is getting more popular and high demand to apply to other fields, but also there are still many problems to utilize in everyday life. One of these problems is that several machine learning models, including neural networks, consistently misclassify adversarial examplesβ€”inputs formed by applying small but intentionally worst-case perturbations to examples from the dataset, such that …


Nuclear Magnetic Resonance Studies On Lithium And Sodium Electrode Materials For Rechargeable Batteries, Tetiana Nosach Oct 2014

Nuclear Magnetic Resonance Studies On Lithium And Sodium Electrode Materials For Rechargeable Batteries, Tetiana Nosach

Dissertations, Theses, and Capstone Projects

In this thesis, Nuclear Magnetic Resonance (NMR) spectroscopic techniques are used to study lithium and sodium electrode materials for advanced rechargeable batteries. Three projects are described in this thesis. The first two projects involve 6Li, 7Li and 31P NMR studies of two cathode materials for advanced rechargeable batteries. The third project is a study of sodium titanate cathode materials for Na-ion batteries, where 1H, 7Li, and 23Na static and magic angle spinning NMR were used in order to obtain detailed information on the chemical environments.