Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Development Of Controller Area Network Bus Programming For Quarter-Scale Tractor Pulling Sled, Brittani Wacker Mar 2022

Development Of Controller Area Network Bus Programming For Quarter-Scale Tractor Pulling Sled, Brittani Wacker

Honors Theses

Usage of Controller Area Network (CAN) technology has allowed for advancements in many industries, including agriculture. Most importantly, its application is useful for refining data acquisition methods. With support from the Quarter-scale Tractor Design Team at UNL, this project united a CAN bus with the team’s current tractor pulling sled. The objectives were to install new instrumentation needed for the CAN bus and to program the updated system utilizing CAN data. The program needed to give the pulling sled functionality and the ability to read and log important pulling data. These goals were all accomplished by implementing new sensors, coding …


Computational Study On Suppression Of Airfoil Flow Separation Using High-Frequency Translational Surface Actuation, Bibek Gupta Apr 2021

Computational Study On Suppression Of Airfoil Flow Separation Using High-Frequency Translational Surface Actuation, Bibek Gupta

Honors Theses

Flow separation is a phenomenon that occurs when pressure increases in the streamwise direction of a flow, making a distinctive boundary layer or separation bubble. It causes aircraft to experience an increase in drag and noise and a decrease in a lift, hence degrading their aviation performance. This study uses numerical simulations to understand better the effects of high-frequency translational surface actuation (HFTSA) on flow separation control. The numerical simulations mimic the experimental parameters of an experiment performed by Okoye et al. on using the HFTSA system to control flow separation. A symmetrical airfoil structure of chord length of 0.3 …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt Jun 2018

Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt

Honors Theses

A tensegrity is a structure composed of a series of rigid members connected in static equilibrium by tensile elements. A vibrating tensegrity robot is an underactuated system in which a set of its struts are vibrated at certain frequency combinations to achieve various locomotive gaits. Evolutionary robotics research lead by Professor John Rieffel focuses on exploiting the complex dynamics of tensegrity structures to control locomotion in vibrating tensegrity robots by finding desired gaits using genetic algorithms. A current hypothesis of interest is that the optimal locomotive gaits of a vibrating tensegrity exist at its resonant frequencies.

In order to observe …


Role Of Diagnostic Monitoring Software Versus Fault-Tolerant Components In The Development Of Spacecraft Avionics Systems, Andrew Attorri Jun 2018

Role Of Diagnostic Monitoring Software Versus Fault-Tolerant Components In The Development Of Spacecraft Avionics Systems, Andrew Attorri

Honors Theses

In any spacecraft, there are several systems that must work simultaneously to ensure a safe mission. One critical system is the ‘avionics’ system, which is comprised of all of the electronic controls on-board the spacecraft, as well as radio links to other craft and ground stations. These systems are present for both manned or unmanned spacecraft.

Throughout the history of spaceflight, there have been several disasters related to avionics failures. To make these systems safer and more reliable, two main strategies have been adopted. The first, more established approach is through use of fault-tolerant components, which can operate under a …


Analysis Of The Properties Of Supercapacitors And Possible Applications For The Technology, Vincent Oliveto Jun 2018

Analysis Of The Properties Of Supercapacitors And Possible Applications For The Technology, Vincent Oliveto

Honors Theses

Supercapacitors have a lot of excellent qualities that would make them a great substitute for batteries when it comes to electrical energy storage systems. Supercapacitors can discharge and charge very rapidly, they have a lifespan in the realm of millions of cycles, and they are much more efficient than batteries. Unfortunately, they cannot hold nearly as much charge as batteries. This paper seeks to further investigate the properties of supercapacitor technology and the best way to exploit these properties with the purpose of integrating them into renewable energy systems. There is currently a lot of research occurring around the world …


Design Of Force Versus Displacement Test Stand, Andrew Fritchley Apr 2018

Design Of Force Versus Displacement Test Stand, Andrew Fritchley

Honors Theses

Performing mechanical design around sensors is a critical skill which all engineering students should be familiar with. Of equal importance is gathering and correctly interpreting electrical data from engineering tests. The aim of this project is to design a force versus displacement test stand for applications related to the measurement of spring force-displacement correlation. The design uses a strain gauge load cell, and a magnetic linear encoder to provide accurate, repeatable force and travel measurements. A mechanical design to mount each sensor was created based initial project constraints. Finite element analysis was performed on all critical components to ensure that …