Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Interfacial Tailoring Of Lithium-Ion Batteries By Atomic/Molecular Layer Deposition, Qian Sun Dec 2018

Interfacial Tailoring Of Lithium-Ion Batteries By Atomic/Molecular Layer Deposition, Qian Sun

Graduate Theses and Dissertations

Lithium-ion batteries (LIBs) are promising energy storage devices, which play significant roles in addressing problems related to fossil fuels depletion and environmental pollution. Since the 1990s, LIBs have attracted great attention for many applications. Nowadays, LIBs are dominating portable electronics, having several advantages over their forerunners, such as high voltage (3.3~4.2 V) [1,2], low self-discharge (< 5~10 %/month) [3,4], wide operation temperature (-20~60 °C) [5,6], and fast charge/discharge rate [7,8]. However, LIBs deliver an energy density of 100-220 Wh/kg in practice to date, which is far from their theoretical ones, thus hindering their further applications in electric vehicles. Additionally, LIBs have been plagued by other problems, such as intolerance to overcharge/overdischarge, low heat resistance, lithium dendrites growth, large volume change of the silicon anode, large polarization and even safety problems.

Atomic layer deposition (ALD) and molecular layer deposition (MLD) are two important techniques, both proceeding in self-limiting gas-solid reactions and exhibiting excellent capabilities for ultra-thin films, conformal coatings, and controllable growth. They can be employed to address the problems of LIBs mentioned above by …


Development Of A Rapid Fatigue Life Testing Method For Reliability Assessment Of Flip-Chip Solder Interconnects, Cody Jackson Marbut Dec 2018

Development Of A Rapid Fatigue Life Testing Method For Reliability Assessment Of Flip-Chip Solder Interconnects, Cody Jackson Marbut

Graduate Theses and Dissertations

The underlying physics of failure are critical in assessing the long term reliability of power packages in their intended field applications, yet traditional reliability determination methods are largely inadequate when considering thermomechanical failures. With current reliability determination methods, long test durations, high costs, and a conglomerate of concurrent reliability degrading threat factors make effective understanding of device reliability difficult and expensive. In this work, an alternative reliability testing apparatus and associated protocol was developed to address these concerns; targeting rapid testing times with minimal cost while preserving fatigue life prediction accuracy. Two test stands were fabricated to evaluate device reliability …


Comparative Study Of Power Semiconductor Devices In A Multilevel Cascaded H-Bridge Inverter, Kenneth Mordi Dec 2018

Comparative Study Of Power Semiconductor Devices In A Multilevel Cascaded H-Bridge Inverter, Kenneth Mordi

Graduate Theses and Dissertations

This thesis compares the performance of a nine-level transformerless cascaded H-bridge (CHB) inverter with integrated battery energy storage system (BESS) using SiC power MOSFETs and Si IGBTs. Two crucial performance drivers for inverter applications are power loss and efficiency. Both of these are investigated in this thesis. Power devices with similar voltage and current ratings are used in the same inverter topology, and the performance of each device is analyzed with respect to switching frequency and operating temperature. The loss measurements and characteristics within the inverter are discussed. The Saber® simulation software was used for the comparisons. The power MOSFET …


Microheater Array Powder Sintering (Maps) For Printing Flexible Electronics, Nicholas Holt May 2018

Microheater Array Powder Sintering (Maps) For Printing Flexible Electronics, Nicholas Holt

Graduate Theses and Dissertations

Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. MAPS operation relies on establishing a precision air gap of a few microns between an array of microheaters, which can reach temperatures of 600°C, and a layer of conductive ink which can be deposited onto a flexible substrate. This system presents challenges, being: the fabrication of a microheater that can reach suitable temperatures in …


Fluid Phase Separation Via Nanochannel Array, John Lee May 2018

Fluid Phase Separation Via Nanochannel Array, John Lee

Graduate Theses and Dissertations

Microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) generate ideas and techniques for creating new devices at the micro/nano scale. This dissertation study designed a gas generator system utilizing nanochannels for phase separation that is useful for micro-pneumatic actuators, micro-valves, and micro-pumps. The new gas generator has the potential to be an integral part of a propulsion system for small-scale satellites. Nano/picosatellites have limited orientation capability partly due to the current limitations of microthruster devices. Development of a self-contained micro propulsion system enables dynamic orbital maneuvering of pico- and nano-class satellites.

Additionally, the new gas generator utilizes a high efficiency, green …