Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil May 2023

Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil

Graduate Theses and Dissertations

Decreasing transistor feature size has led to an increase in the number of transistors in integrated circuits (IC), allowing for the implementation of more complex logic. However, such logic also requires more complex clock tree synthesis (CTS) to avoid timing violations as the clock must reach many more gates over larger areas. Thus, timing analysis requires significantly more computing power and designer involvement than in the past. For these reasons, IC designers have been pushed to nix conventional synchronous (SYNC) architecture and explore novel methodologies such as asynchronous, self-timed architecture. This dissertation evaluates the nominal active energy, voltage-scaled active energy, …


A Nano-Drone Safety Architecture, Connor J. Sexton Jun 2022

A Nano-Drone Safety Architecture, Connor J. Sexton

Master's Theses

As small-form factor drones grow more intelligent, they increasingly require more sophisticated capabilities to record sensor data and system state, ensuring safe and improved operation. Already regulations for black boxes, electronic data recorders (EDRs), for determining liabilities and improving the safety of large-form factor autonomous vehicles are becoming established. Conventional techniques use hardened memory storage units that conserve all sensor (visual) and system operational state; and N-way redundant models for detecting uncertainty in system operation. For small-form factor drones, which are highly limited by weight, power, and computational resources, these techniques become increasingly prohibitive. In this paper, we propose a …


A Viable Residential Dc Microgrid For Low Income Communities – Architecture, Protection And Education, Karthik Palaniappan May 2019

A Viable Residential Dc Microgrid For Low Income Communities – Architecture, Protection And Education, Karthik Palaniappan

Theses and Dissertations

The availability of fossil fuels in the future and the environmental effects such as the carbon footprint of the existing methodologies to produce electricity is an increasing area of concern. In rural areas of under-developed parts of the world, the problem is lack of access to electrification. DC microgrids have become a proven solution to electrification in these areas with demonstrated exceptional quality of power, high reliability, efficiency, and simplified integration between renewable energy sources (principally solar PV) and energy storage. In the United States, a different problem occurs that can be addressed with the same DC microgrid approach that …


A Viable Residential Dc Microgrid For Low Income Communities – Architecture, Protection And Education, Karthik Palaniappan May 2019

A Viable Residential Dc Microgrid For Low Income Communities – Architecture, Protection And Education, Karthik Palaniappan

Theses and Dissertations

The availability of fossil fuels in the future and the environmental effects such as the carbon footprint of the existing methodologies to produce electricity is an increasing area of concern. In rural areas of under-developed parts of the world, the problem is lack of access to electrification. DC microgrids have become a proven solution to electrification in these areas with demonstrated exceptional quality of power, high reliability, efficiency, and simplified integration between renewable energy sources (principally solar PV) and energy storage. In the United States, a different problem occurs that can be addressed with the same DC microgrid approach that …


Asynchronous Mips Processors: Educational Simulations, Robert L. Webb Aug 2010

Asynchronous Mips Processors: Educational Simulations, Robert L. Webb

Master's Theses

The system clock has been omnipresent in most mainstream chip designs. While simplifying many design problems the clock has caused the problems of clock skew, high power consumption, electromagnetic interference, and worst-case performance. In recent years, as the timing constraints of synchronous designs have been squeezed ever tighter, the efficiencies of asynchronous designs have become more attractive. By removing the clock, these issues can be mitigated. How- ever, asynchronous designs are generally more complex and difficult to debug. In this paper I discuss the advantages of asynchronous processors and the specifics of some asynchronous designs, outline the roadblocks to asynchronous …